Loading…

Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault

For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2016-02, Vol.31 (1), p.351-361
Main Authors: Rui Li, Lie Xu, Holliday, Derrick, Page, Frederick, Finney, Stephen J., Williams, Barry W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213
cites cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213
container_end_page 361
container_issue 1
container_start_page 351
container_title IEEE transactions on power delivery
container_volume 31
creator Rui Li
Lie Xu
Holliday, Derrick
Page, Frederick
Finney, Stephen J.
Williams, Barry W.
description For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.
doi_str_mv 10.1109/TPWRD.2015.2471089
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7217845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7217845</ieee_id><sourcerecordid>1786176134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNyvgRO1milFKkoqLSwtJyEltylUexk0X_HrdFLFiNZnTuzJ2L0C2GCcaQPa7fv1bTCQGcTAgTGNLsDI1wRkXMCKTnaARpmsRpJsQluvJ-CwAMMhihed61vW2HbvDRcqed6m3XRp2JVqqyqo7ehrq3vXaNbUM3_5zm0cfe97rx0aattIvCYKYCdI0ujKq9vvmtY7SZPa_zebxYvrzmT4u4pIL0sTmaU6xiwDGjhdDEGGGSgqjEFJoGWyoLkCAUjCpFIaqEC2KgVDrFBNMxejjt3bnue9C-l431pa5r1erwhMQi5VhwTFlA7_-h225w4Y8DxQFzngAPFDlRpeu8d9rInbONcnuJQR7Clcdw5SFc-RtuEN2dRFZr_ScQJFxnCf0Bdgt0OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760166506</pqid></control><display><type>article</type><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><source>IEEE Xplore (Online service)</source><creator>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</creator><creatorcontrib>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</creatorcontrib><description>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2015.2471089</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Capacitors ; Circuit faults ; Continuous operation ; Converters ; dc fault ; Direct current ; Dynamical systems ; Dynamics ; Fault currents ; Faults ; HVDC transmission ; Inductance ; Inductors ; modular multilevel converter (MMC) ; Networks ; Reactors ; Voltage control</subject><ispartof>IEEE transactions on power delivery, 2016-02, Vol.31 (1), p.351-361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</citedby><cites>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7217845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rui Li</creatorcontrib><creatorcontrib>Lie Xu</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Page, Frederick</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</description><subject>Active control</subject><subject>Capacitors</subject><subject>Circuit faults</subject><subject>Continuous operation</subject><subject>Converters</subject><subject>dc fault</subject><subject>Direct current</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fault currents</subject><subject>Faults</subject><subject>HVDC transmission</subject><subject>Inductance</subject><subject>Inductors</subject><subject>modular multilevel converter (MMC)</subject><subject>Networks</subject><subject>Reactors</subject><subject>Voltage control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNyvgRO1milFKkoqLSwtJyEltylUexk0X_HrdFLFiNZnTuzJ2L0C2GCcaQPa7fv1bTCQGcTAgTGNLsDI1wRkXMCKTnaARpmsRpJsQluvJ-CwAMMhihed61vW2HbvDRcqed6m3XRp2JVqqyqo7ehrq3vXaNbUM3_5zm0cfe97rx0aattIvCYKYCdI0ujKq9vvmtY7SZPa_zebxYvrzmT4u4pIL0sTmaU6xiwDGjhdDEGGGSgqjEFJoGWyoLkCAUjCpFIaqEC2KgVDrFBNMxejjt3bnue9C-l431pa5r1erwhMQi5VhwTFlA7_-h225w4Y8DxQFzngAPFDlRpeu8d9rInbONcnuJQR7Clcdw5SFc-RtuEN2dRFZr_ScQJFxnCf0Bdgt0OA</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Rui Li</creator><creator>Lie Xu</creator><creator>Holliday, Derrick</creator><creator>Page, Frederick</creator><creator>Finney, Stephen J.</creator><creator>Williams, Barry W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20160201</creationdate><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><author>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active control</topic><topic>Capacitors</topic><topic>Circuit faults</topic><topic>Continuous operation</topic><topic>Converters</topic><topic>dc fault</topic><topic>Direct current</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fault currents</topic><topic>Faults</topic><topic>HVDC transmission</topic><topic>Inductance</topic><topic>Inductors</topic><topic>modular multilevel converter (MMC)</topic><topic>Networks</topic><topic>Reactors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui Li</creatorcontrib><creatorcontrib>Lie Xu</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Page, Frederick</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui Li</au><au>Lie Xu</au><au>Holliday, Derrick</au><au>Page, Frederick</au><au>Finney, Stephen J.</au><au>Williams, Barry W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>351</spage><epage>361</epage><pages>351-361</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2015.2471089</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2016-02, Vol.31 (1), p.351-361
issn 0885-8977
1937-4208
language eng
recordid cdi_ieee_primary_7217845
source IEEE Xplore (Online service)
subjects Active control
Capacitors
Circuit faults
Continuous operation
Converters
dc fault
Direct current
Dynamical systems
Dynamics
Fault currents
Faults
HVDC transmission
Inductance
Inductors
modular multilevel converter (MMC)
Networks
Reactors
Voltage control
title Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Operation%20of%20Radial%20Multiterminal%20HVDC%20Systems%20Under%20DC%20Fault&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Rui%20Li&rft.date=2016-02-01&rft.volume=31&rft.issue=1&rft.spage=351&rft.epage=361&rft.pages=351-361&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2015.2471089&rft_dat=%3Cproquest_ieee_%3E1786176134%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760166506&rft_id=info:pmid/&rft_ieee_id=7217845&rfr_iscdi=true