Loading…
Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault
For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been c...
Saved in:
Published in: | IEEE transactions on power delivery 2016-02, Vol.31 (1), p.351-361 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213 |
container_end_page | 361 |
container_issue | 1 |
container_start_page | 351 |
container_title | IEEE transactions on power delivery |
container_volume | 31 |
creator | Rui Li Lie Xu Holliday, Derrick Page, Frederick Finney, Stephen J. Williams, Barry W. |
description | For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TPWRD.2015.2471089 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7217845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7217845</ieee_id><sourcerecordid>1786176134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNyvgRO1milFKkoqLSwtJyEltylUexk0X_HrdFLFiNZnTuzJ2L0C2GCcaQPa7fv1bTCQGcTAgTGNLsDI1wRkXMCKTnaARpmsRpJsQluvJ-CwAMMhihed61vW2HbvDRcqed6m3XRp2JVqqyqo7ehrq3vXaNbUM3_5zm0cfe97rx0aattIvCYKYCdI0ujKq9vvmtY7SZPa_zebxYvrzmT4u4pIL0sTmaU6xiwDGjhdDEGGGSgqjEFJoGWyoLkCAUjCpFIaqEC2KgVDrFBNMxejjt3bnue9C-l431pa5r1erwhMQi5VhwTFlA7_-h225w4Y8DxQFzngAPFDlRpeu8d9rInbONcnuJQR7Clcdw5SFc-RtuEN2dRFZr_ScQJFxnCf0Bdgt0OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760166506</pqid></control><display><type>article</type><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><source>IEEE Xplore (Online service)</source><creator>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</creator><creatorcontrib>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</creatorcontrib><description>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2015.2471089</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Capacitors ; Circuit faults ; Continuous operation ; Converters ; dc fault ; Direct current ; Dynamical systems ; Dynamics ; Fault currents ; Faults ; HVDC transmission ; Inductance ; Inductors ; modular multilevel converter (MMC) ; Networks ; Reactors ; Voltage control</subject><ispartof>IEEE transactions on power delivery, 2016-02, Vol.31 (1), p.351-361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</citedby><cites>FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7217845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rui Li</creatorcontrib><creatorcontrib>Lie Xu</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Page, Frederick</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</description><subject>Active control</subject><subject>Capacitors</subject><subject>Circuit faults</subject><subject>Continuous operation</subject><subject>Converters</subject><subject>dc fault</subject><subject>Direct current</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fault currents</subject><subject>Faults</subject><subject>HVDC transmission</subject><subject>Inductance</subject><subject>Inductors</subject><subject>modular multilevel converter (MMC)</subject><subject>Networks</subject><subject>Reactors</subject><subject>Voltage control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNyvgRO1milFKkoqLSwtJyEltylUexk0X_HrdFLFiNZnTuzJ2L0C2GCcaQPa7fv1bTCQGcTAgTGNLsDI1wRkXMCKTnaARpmsRpJsQluvJ-CwAMMhihed61vW2HbvDRcqed6m3XRp2JVqqyqo7ehrq3vXaNbUM3_5zm0cfe97rx0aattIvCYKYCdI0ujKq9vvmtY7SZPa_zebxYvrzmT4u4pIL0sTmaU6xiwDGjhdDEGGGSgqjEFJoGWyoLkCAUjCpFIaqEC2KgVDrFBNMxejjt3bnue9C-l431pa5r1erwhMQi5VhwTFlA7_-h225w4Y8DxQFzngAPFDlRpeu8d9rInbONcnuJQR7Clcdw5SFc-RtuEN2dRFZr_ScQJFxnCf0Bdgt0OA</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Rui Li</creator><creator>Lie Xu</creator><creator>Holliday, Derrick</creator><creator>Page, Frederick</creator><creator>Finney, Stephen J.</creator><creator>Williams, Barry W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20160201</creationdate><title>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</title><author>Rui Li ; Lie Xu ; Holliday, Derrick ; Page, Frederick ; Finney, Stephen J. ; Williams, Barry W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active control</topic><topic>Capacitors</topic><topic>Circuit faults</topic><topic>Continuous operation</topic><topic>Converters</topic><topic>dc fault</topic><topic>Direct current</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fault currents</topic><topic>Faults</topic><topic>HVDC transmission</topic><topic>Inductance</topic><topic>Inductors</topic><topic>modular multilevel converter (MMC)</topic><topic>Networks</topic><topic>Reactors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui Li</creatorcontrib><creatorcontrib>Lie Xu</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Page, Frederick</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui Li</au><au>Lie Xu</au><au>Holliday, Derrick</au><au>Page, Frederick</au><au>Finney, Stephen J.</au><au>Williams, Barry W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>351</spage><epage>361</epage><pages>351-361</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>For a large multiterminal HVDC system, it is important for a dc fault on a single branch to not cause significant disturbance to the operation of the healthy parts of the dc network. Some dc circuit breakers (DCCBs), for example, mechanical type, are low cost and have low power loss, but have been considered unsuitable for dc fault protection and isolation in a multiterminal HVDC system due to their long opening times. This paper proposes the use of additional dc passive components and novel converter control combined with mechanical DCCBs to ensure that the healthy dc network can continue to operate without disruption during a dc fault on one dc branch. Two circuit structures, using an additional dc reactor, and a reactor and capacitor combination, connected to the dc-link node in a radial HVDC system, are proposed to ensure that overcurrent risk at the converters connected to the healthy network is minimized before the isolation of the faulty branch by mechanical DCCBs. Active control of dc fault current by dynamically regulating the dc components of the converter arm voltages is proposed to further reduce the fault arm current. Simulation of a radial three-terminal HVDC system demonstrates the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2015.2471089</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2016-02, Vol.31 (1), p.351-361 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_ieee_primary_7217845 |
source | IEEE Xplore (Online service) |
subjects | Active control Capacitors Circuit faults Continuous operation Converters dc fault Direct current Dynamical systems Dynamics Fault currents Faults HVDC transmission Inductance Inductors modular multilevel converter (MMC) Networks Reactors Voltage control |
title | Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Operation%20of%20Radial%20Multiterminal%20HVDC%20Systems%20Under%20DC%20Fault&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Rui%20Li&rft.date=2016-02-01&rft.volume=31&rft.issue=1&rft.spage=351&rft.epage=361&rft.pages=351-361&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2015.2471089&rft_dat=%3Cproquest_ieee_%3E1786176134%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-f71089a4d406143b7e2ff7f5b2a5fbe3040a9f717230fac7b7d5672f0cae81213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760166506&rft_id=info:pmid/&rft_ieee_id=7217845&rfr_iscdi=true |