Loading…

A generalized fuzzy adaptive control method

This paper presents and discusses the architecture and learning process of an adaptive fuzzy control methodology. This methodology combines fuzzy decision implementation in the form of linguistic rules and a mechanism to fine tune the initial fuzzy plant identifier and fuzzy controller linguistic ru...

Full description

Saved in:
Bibliographic Details
Main Authors: Azam, F., VanLandingham, H.F.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2088 vol.3
container_issue
container_start_page 2083
container_title
container_volume 3
creator Azam, F.
VanLandingham, H.F.
description This paper presents and discusses the architecture and learning process of an adaptive fuzzy control methodology. This methodology combines fuzzy decision implementation in the form of linguistic rules and a mechanism to fine tune the initial fuzzy plant identifier and fuzzy controller linguistic rules simultaneously using a gradient descent method. The non-optimal linguistic rules are refined online by the adaptation and learning mechanism to maintain a consistent desired optimal control performance. An analytic dynamic plant Jacobian is estimated via a parallel forward fuzzy plant identifier model of the plant because the plant in this control scheme is situated between the controller and the error to be fed back. The use of an analytic Jacobian matrix gives additional robustness to this control scheme. The computer simulation results have shown that the designed fuzzy controller using this methodology is capable of providing good control system performance and effective control of nonlinear dynamic systems.
doi_str_mv 10.1109/ICSMC.1998.724955
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_724955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>724955</ieee_id><sourcerecordid>27534977</sourcerecordid><originalsourceid>FETCH-LOGICAL-i135t-5cf3018ddfbbbde96e9caeb665e60c48c636b1ce49bb4724e4e5231987a4d6a83</originalsourceid><addsrcrecordid>eNotkElLw1AYRR8OYKz9AbrKyo0kvnlYllC1UHGhgrvwhi8ayWQGof31BiJcuJvD4XIRuiY4JQSb-132-pylxBidKsqNECcookKphEghTtHaKI3nMK6UlmcoIljSxFD6cYEuh-EbY4o50RG628Sf0EBvq_IIIS6m4_EQ22C7sfyF2LfN2LdVXMP41YYrdF7YaoD1f6_Q-8P2LXtK9i-Pu2yzT0rCxJgIXzBMdAiFcy6AkWC8BSelAIk9114y6YgHbpzj83jgICgjRivLg7SardDt4u369meCYczrcvBQVbaBdhpyqgTjRqkZvFnAEgDyri9r2x_y5Q_2B5bWUgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27534977</pqid></control><display><type>conference_proceeding</type><title>A generalized fuzzy adaptive control method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azam, F. ; VanLandingham, H.F.</creator><creatorcontrib>Azam, F. ; VanLandingham, H.F.</creatorcontrib><description>This paper presents and discusses the architecture and learning process of an adaptive fuzzy control methodology. This methodology combines fuzzy decision implementation in the form of linguistic rules and a mechanism to fine tune the initial fuzzy plant identifier and fuzzy controller linguistic rules simultaneously using a gradient descent method. The non-optimal linguistic rules are refined online by the adaptation and learning mechanism to maintain a consistent desired optimal control performance. An analytic dynamic plant Jacobian is estimated via a parallel forward fuzzy plant identifier model of the plant because the plant in this control scheme is situated between the controller and the error to be fed back. The use of an analytic Jacobian matrix gives additional robustness to this control scheme. The computer simulation results have shown that the designed fuzzy controller using this methodology is capable of providing good control system performance and effective control of nonlinear dynamic systems.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9780780347786</identifier><identifier>ISBN: 0780347781</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.1998.724955</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Computer errors ; Error correction ; Fuzzy control ; Jacobian matrices ; Learning systems ; Nonlinear control systems ; Optimal control ; Programmable control ; Robust control</subject><ispartof>Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics, 1998, Vol.3, p.2083-2088 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/724955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4050,4051,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/724955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azam, F.</creatorcontrib><creatorcontrib>VanLandingham, H.F.</creatorcontrib><title>A generalized fuzzy adaptive control method</title><title>Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics</title><addtitle>ICSMC</addtitle><description>This paper presents and discusses the architecture and learning process of an adaptive fuzzy control methodology. This methodology combines fuzzy decision implementation in the form of linguistic rules and a mechanism to fine tune the initial fuzzy plant identifier and fuzzy controller linguistic rules simultaneously using a gradient descent method. The non-optimal linguistic rules are refined online by the adaptation and learning mechanism to maintain a consistent desired optimal control performance. An analytic dynamic plant Jacobian is estimated via a parallel forward fuzzy plant identifier model of the plant because the plant in this control scheme is situated between the controller and the error to be fed back. The use of an analytic Jacobian matrix gives additional robustness to this control scheme. The computer simulation results have shown that the designed fuzzy controller using this methodology is capable of providing good control system performance and effective control of nonlinear dynamic systems.</description><subject>Adaptive control</subject><subject>Computer errors</subject><subject>Error correction</subject><subject>Fuzzy control</subject><subject>Jacobian matrices</subject><subject>Learning systems</subject><subject>Nonlinear control systems</subject><subject>Optimal control</subject><subject>Programmable control</subject><subject>Robust control</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9780780347786</isbn><isbn>0780347781</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkElLw1AYRR8OYKz9AbrKyo0kvnlYllC1UHGhgrvwhi8ayWQGof31BiJcuJvD4XIRuiY4JQSb-132-pylxBidKsqNECcookKphEghTtHaKI3nMK6UlmcoIljSxFD6cYEuh-EbY4o50RG628Sf0EBvq_IIIS6m4_EQ22C7sfyF2LfN2LdVXMP41YYrdF7YaoD1f6_Q-8P2LXtK9i-Pu2yzT0rCxJgIXzBMdAiFcy6AkWC8BSelAIk9114y6YgHbpzj83jgICgjRivLg7SardDt4u369meCYczrcvBQVbaBdhpyqgTjRqkZvFnAEgDyri9r2x_y5Q_2B5bWUgY</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Azam, F.</creator><creator>VanLandingham, H.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1998</creationdate><title>A generalized fuzzy adaptive control method</title><author>Azam, F. ; VanLandingham, H.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i135t-5cf3018ddfbbbde96e9caeb665e60c48c636b1ce49bb4724e4e5231987a4d6a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adaptive control</topic><topic>Computer errors</topic><topic>Error correction</topic><topic>Fuzzy control</topic><topic>Jacobian matrices</topic><topic>Learning systems</topic><topic>Nonlinear control systems</topic><topic>Optimal control</topic><topic>Programmable control</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Azam, F.</creatorcontrib><creatorcontrib>VanLandingham, H.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azam, F.</au><au>VanLandingham, H.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A generalized fuzzy adaptive control method</atitle><btitle>Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics</btitle><stitle>ICSMC</stitle><date>1998</date><risdate>1998</risdate><volume>3</volume><spage>2083</spage><epage>2088 vol.3</epage><pages>2083-2088 vol.3</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9780780347786</isbn><isbn>0780347781</isbn><abstract>This paper presents and discusses the architecture and learning process of an adaptive fuzzy control methodology. This methodology combines fuzzy decision implementation in the form of linguistic rules and a mechanism to fine tune the initial fuzzy plant identifier and fuzzy controller linguistic rules simultaneously using a gradient descent method. The non-optimal linguistic rules are refined online by the adaptation and learning mechanism to maintain a consistent desired optimal control performance. An analytic dynamic plant Jacobian is estimated via a parallel forward fuzzy plant identifier model of the plant because the plant in this control scheme is situated between the controller and the error to be fed back. The use of an analytic Jacobian matrix gives additional robustness to this control scheme. The computer simulation results have shown that the designed fuzzy controller using this methodology is capable of providing good control system performance and effective control of nonlinear dynamic systems.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1998.724955</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics, 1998, Vol.3, p.2083-2088 vol.3
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_724955
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Computer errors
Error correction
Fuzzy control
Jacobian matrices
Learning systems
Nonlinear control systems
Optimal control
Programmable control
Robust control
title A generalized fuzzy adaptive control method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20generalized%20fuzzy%20adaptive%20control%20method&rft.btitle=Conference%20proceedings%20-%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics&rft.au=Azam,%20F.&rft.date=1998&rft.volume=3&rft.spage=2083&rft.epage=2088%20vol.3&rft.pages=2083-2088%20vol.3&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9780780347786&rft.isbn_list=0780347781&rft_id=info:doi/10.1109/ICSMC.1998.724955&rft_dat=%3Cproquest_6IE%3E27534977%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i135t-5cf3018ddfbbbde96e9caeb665e60c48c636b1ce49bb4724e4e5231987a4d6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27534977&rft_id=info:pmid/&rft_ieee_id=724955&rfr_iscdi=true