Loading…
Low-rank matrix recovery from non-linear observations
Algorithms for sparse recovery problems from non-linear measurements have attracted some attention lately. Closely related to the problem of sparse is recovery is the problem of low-rank matrix recovery. There is no work on the topic of low-rank matrix recovery from non-linear measurements. This is...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Algorithms for sparse recovery problems from non-linear measurements have attracted some attention lately. Closely related to the problem of sparse is recovery is the problem of low-rank matrix recovery. There is no work on the topic of low-rank matrix recovery from non-linear measurements. This is the first study that proposes two algorithms for the said problem. The first one is based on nuclear norm minimization while the second one is based on Ky-Fan norm minimization. |
---|---|
ISSN: | 1546-1874 2165-3577 |
DOI: | 10.1109/ICDSP.2015.7251949 |