Loading…
Evolving MNK-landscapes with structural constraints
In this paper we propose a method for the generation of instances of the MNK-landscapes that maximize different measures used to characterize multi-objective problems. In contrast to previous approaches, the introduced algorithm works by modifying the neighborhood structure of the variables of the M...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1371 |
container_issue | |
container_start_page | 1364 |
container_title | |
container_volume | |
creator | Santana, Roberto Mendiburu, Alexander Lozano, Jose A. |
description | In this paper we propose a method for the generation of instances of the MNK-landscapes that maximize different measures used to characterize multi-objective problems. In contrast to previous approaches, the introduced algorithm works by modifying the neighborhood structure of the variables of the MNK-landscape while keeping fixed the local parameters of its functions. A variant of the algorithm is presented to deal with situations in which the exhaustive enumeration of search space is unfeasible. We show how the introduced method can be used to generate instances with an increased number of solutions in the Pareto front. Furthermore, we investigate whether direct optimization of the correlation between objectives can be used as an indirect method to increase the size of the Pareto fronts of the generated instances. |
doi_str_mv | 10.1109/CEC.2015.7257047 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7257047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257047</ieee_id><sourcerecordid>7257047</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-38ada2a22969d3c25edcbc5aa9c90758053635f84a6a82921eb897af3bfde6ef3</originalsourceid><addsrcrecordid>eNotj8tOwzAQRQ0CibawR2KTH3Dw-BF7ligKD1FgAxK7auI4YBTSKnaL-Hsq0dU9Z3Oky9gliBJA4HXd1KUUYEorjRXaHrE5aItoNUp7zGaAGrgQsjrZs3DIrXXvZ2ye0pcQoA3gjKlmtx52cfwonp4f-UBjlzxtQip-Yv4sUp62Pm8nGgq_HvdGcczpnJ32NKRwcdgFe7ttXut7vny5e6hvljyCVJkrRx1JkhIr7JSXJnS-9YYIPQprnDCqUqZ3mipyEiWE1qGlXrV9F6rQqwW7-u_GEMJqM8Vvmn5Xh7PqDwwkRtI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolving MNK-landscapes with structural constraints</title><source>IEEE Xplore All Conference Series</source><creator>Santana, Roberto ; Mendiburu, Alexander ; Lozano, Jose A.</creator><creatorcontrib>Santana, Roberto ; Mendiburu, Alexander ; Lozano, Jose A.</creatorcontrib><description>In this paper we propose a method for the generation of instances of the MNK-landscapes that maximize different measures used to characterize multi-objective problems. In contrast to previous approaches, the introduced algorithm works by modifying the neighborhood structure of the variables of the MNK-landscape while keeping fixed the local parameters of its functions. A variant of the algorithm is presented to deal with situations in which the exhaustive enumeration of search space is unfeasible. We show how the introduced method can be used to generate instances with an increased number of solutions in the Pareto front. Furthermore, we investigate whether direct optimization of the correlation between objectives can be used as an indirect method to increase the size of the Pareto fronts of the generated instances.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257047</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1364-1371</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santana, Roberto</creatorcontrib><creatorcontrib>Mendiburu, Alexander</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><title>Evolving MNK-landscapes with structural constraints</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>In this paper we propose a method for the generation of instances of the MNK-landscapes that maximize different measures used to characterize multi-objective problems. In contrast to previous approaches, the introduced algorithm works by modifying the neighborhood structure of the variables of the MNK-landscape while keeping fixed the local parameters of its functions. A variant of the algorithm is presented to deal with situations in which the exhaustive enumeration of search space is unfeasible. We show how the introduced method can be used to generate instances with an increased number of solutions in the Pareto front. Furthermore, we investigate whether direct optimization of the correlation between objectives can be used as an indirect method to increase the size of the Pareto fronts of the generated instances.</description><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAQRQ0CibawR2KTH3Dw-BF7ligKD1FgAxK7auI4YBTSKnaL-Hsq0dU9Z3Oky9gliBJA4HXd1KUUYEorjRXaHrE5aItoNUp7zGaAGrgQsjrZs3DIrXXvZ2ye0pcQoA3gjKlmtx52cfwonp4f-UBjlzxtQip-Yv4sUp62Pm8nGgq_HvdGcczpnJ32NKRwcdgFe7ttXut7vny5e6hvljyCVJkrRx1JkhIr7JSXJnS-9YYIPQprnDCqUqZ3mipyEiWE1qGlXrV9F6rQqwW7-u_GEMJqM8Vvmn5Xh7PqDwwkRtI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Santana, Roberto</creator><creator>Mendiburu, Alexander</creator><creator>Lozano, Jose A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Evolving MNK-landscapes with structural constraints</title><author>Santana, Roberto ; Mendiburu, Alexander ; Lozano, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-38ada2a22969d3c25edcbc5aa9c90758053635f84a6a82921eb897af3bfde6ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santana, Roberto</creatorcontrib><creatorcontrib>Mendiburu, Alexander</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santana, Roberto</au><au>Mendiburu, Alexander</au><au>Lozano, Jose A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolving MNK-landscapes with structural constraints</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>1364</spage><epage>1371</epage><pages>1364-1371</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>In this paper we propose a method for the generation of instances of the MNK-landscapes that maximize different measures used to characterize multi-objective problems. In contrast to previous approaches, the introduced algorithm works by modifying the neighborhood structure of the variables of the MNK-landscape while keeping fixed the local parameters of its functions. A variant of the algorithm is presented to deal with situations in which the exhaustive enumeration of search space is unfeasible. We show how the introduced method can be used to generate instances with an increased number of solutions in the Pareto front. Furthermore, we investigate whether direct optimization of the correlation between objectives can be used as an indirect method to increase the size of the Pareto fronts of the generated instances.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257047</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1364-1371 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7257047 |
source | IEEE Xplore All Conference Series |
title | Evolving MNK-landscapes with structural constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolving%20MNK-landscapes%20with%20structural%20constraints&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Santana,%20Roberto&rft.date=2015-05-01&rft.spage=1364&rft.epage=1371&rft.pages=1364-1371&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257047&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&rft_dat=%3Cieee_CHZPO%3E7257047%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-38ada2a22969d3c25edcbc5aa9c90758053635f84a6a82921eb897af3bfde6ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257047&rfr_iscdi=true |