Loading…
Can OneMax help optimizing LeadingOnes using the EA+RL method?
There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on th...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1768 |
container_issue | |
container_start_page | 1762 |
container_title | |
container_volume | |
creator | Buzdalov, Maxim Buzdalova, Arina |
description | There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives. |
doi_str_mv | 10.1109/CEC.2015.7257100 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7257100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257100</ieee_id><sourcerecordid>7257100</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-b31149cf9aa9dcef8592982cf57a930f658fcd827e41aab1b44109262bf18acf3</originalsourceid><addsrcrecordid>eNotj99LwzAUhaMouE3fBV_yLq25adLkviij1B9QGYiCb-O2TWxk7cpaYfrXW3FP3-EcOPAxdgkiBhB4k-VZLAXo2EhtQIgjNgdlEI1CaY7ZDFBBJIRMT6YsLEbG2PczNh-GTyFAacAZu82o46vOPdOeN27T820_hjb8hO6DF47qidM68K_hrxkbx_Pl9UvBWzc22_runJ162gzu4sAFe7vPX7PHqFg9PGXLIgogkzEqEwCFlUcirCvnrUaJVlZeG8JE-FRbX9VWGqeAqIRSqUlQprL0YKnyyYJd_f8G59y634WWdt_rg3fyC58tSNk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Can OneMax help optimizing LeadingOnes using the EA+RL method?</title><source>IEEE Xplore All Conference Series</source><creator>Buzdalov, Maxim ; Buzdalova, Arina</creator><creatorcontrib>Buzdalov, Maxim ; Buzdalova, Arina</creatorcontrib><description>There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Evolutionary computation ; Learning (artificial intelligence) ; Markov processes ; Optimization ; Silicon ; Switches</subject><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1762-1768</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buzdalov, Maxim</creatorcontrib><creatorcontrib>Buzdalova, Arina</creatorcontrib><title>Can OneMax help optimizing LeadingOnes using the EA+RL method?</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.</description><subject>Algorithm design and analysis</subject><subject>Evolutionary computation</subject><subject>Learning (artificial intelligence)</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Silicon</subject><subject>Switches</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj99LwzAUhaMouE3fBV_yLq25adLkviij1B9QGYiCb-O2TWxk7cpaYfrXW3FP3-EcOPAxdgkiBhB4k-VZLAXo2EhtQIgjNgdlEI1CaY7ZDFBBJIRMT6YsLEbG2PczNh-GTyFAacAZu82o46vOPdOeN27T820_hjb8hO6DF47qidM68K_hrxkbx_Pl9UvBWzc22_runJ162gzu4sAFe7vPX7PHqFg9PGXLIgogkzEqEwCFlUcirCvnrUaJVlZeG8JE-FRbX9VWGqeAqIRSqUlQprL0YKnyyYJd_f8G59y634WWdt_rg3fyC58tSNk</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Buzdalov, Maxim</creator><creator>Buzdalova, Arina</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Can OneMax help optimizing LeadingOnes using the EA+RL method?</title><author>Buzdalov, Maxim ; Buzdalova, Arina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-b31149cf9aa9dcef8592982cf57a930f658fcd827e41aab1b44109262bf18acf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Evolutionary computation</topic><topic>Learning (artificial intelligence)</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Silicon</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzdalov, Maxim</creatorcontrib><creatorcontrib>Buzdalova, Arina</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buzdalov, Maxim</au><au>Buzdalova, Arina</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Can OneMax help optimizing LeadingOnes using the EA+RL method?</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>1762</spage><epage>1768</epage><pages>1762-1768</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257100</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1762-1768 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7257100 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Evolutionary computation Learning (artificial intelligence) Markov processes Optimization Silicon Switches |
title | Can OneMax help optimizing LeadingOnes using the EA+RL method? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Can%20OneMax%20help%20optimizing%20LeadingOnes%20using%20the%20EA+RL%20method?&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Buzdalov,%20Maxim&rft.date=2015-05-01&rft.spage=1762&rft.epage=1768&rft.pages=1762-1768&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257100&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&rft_dat=%3Cieee_CHZPO%3E7257100%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-b31149cf9aa9dcef8592982cf57a930f658fcd827e41aab1b44109262bf18acf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257100&rfr_iscdi=true |