Loading…
Evolutionary computation for architectural design of restaurant layouts
This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and p...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2286 |
container_issue | |
container_start_page | 2279 |
container_title | |
container_volume | |
creator | Ugurlu, Cemre Chatzikonstantinou, Ioannis Sariyildiz, Sevil Tasgetiren, M. Fatih |
description | This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design. |
doi_str_mv | 10.1109/CEC.2015.7257166 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7257166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257166</ieee_id><sourcerecordid>7257166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353</originalsourceid><addsrcrecordid>eNotjz1PwzAYhA0CibawI7H4DyS8r-34Y0RRKEiVWDqwVa7tQFAaV7GD1H9PUDvd3TOc7gh5RCgRwTzXTV0ywKpUrFIo5RVZolDGKGGYuiYLNAILACZvZg_aFErpzzuyTOkHAEWFZkHWzW_sp9zFwY4n6uLhOGX7H2kbR2pH993l4PI02p76kLqvgcaWjiFlO7Mh096e4pTTPbltbZ_Cw0VXZPvabOu3YvOxfq9fNkWHjOeCqz1ycIJ54Z3XUjHPpfVB740GyZUXzjBohbMSBQqAloGTmhslRcsrviJP59ouhLA7jt1hnr27_Od_7o5NWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary computation for architectural design of restaurant layouts</title><source>IEEE Xplore All Conference Series</source><creator>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</creator><creatorcontrib>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</creatorcontrib><description>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257166</identifier><language>eng</language><publisher>IEEE</publisher><subject>architectural design ; Buildings ; evolutionary algorithms ; Genetic algorithms ; Investment ; layout design ; multi-objective optimization ; Optimization ; parametric model ; pareto ; Sociology ; Sorting ; Statistics</subject><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2279-2286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ugurlu, Cemre</creatorcontrib><creatorcontrib>Chatzikonstantinou, Ioannis</creatorcontrib><creatorcontrib>Sariyildiz, Sevil</creatorcontrib><creatorcontrib>Tasgetiren, M. Fatih</creatorcontrib><title>Evolutionary computation for architectural design of restaurant layouts</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</description><subject>architectural design</subject><subject>Buildings</subject><subject>evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Investment</subject><subject>layout design</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>parametric model</subject><subject>pareto</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjz1PwzAYhA0CibawI7H4DyS8r-34Y0RRKEiVWDqwVa7tQFAaV7GD1H9PUDvd3TOc7gh5RCgRwTzXTV0ywKpUrFIo5RVZolDGKGGYuiYLNAILACZvZg_aFErpzzuyTOkHAEWFZkHWzW_sp9zFwY4n6uLhOGX7H2kbR2pH993l4PI02p76kLqvgcaWjiFlO7Mh096e4pTTPbltbZ_Cw0VXZPvabOu3YvOxfq9fNkWHjOeCqz1ycIJ54Z3XUjHPpfVB740GyZUXzjBohbMSBQqAloGTmhslRcsrviJP59ouhLA7jt1hnr27_Od_7o5NWg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ugurlu, Cemre</creator><creator>Chatzikonstantinou, Ioannis</creator><creator>Sariyildiz, Sevil</creator><creator>Tasgetiren, M. Fatih</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Evolutionary computation for architectural design of restaurant layouts</title><author>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>architectural design</topic><topic>Buildings</topic><topic>evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Investment</topic><topic>layout design</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>parametric model</topic><topic>pareto</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugurlu, Cemre</creatorcontrib><creatorcontrib>Chatzikonstantinou, Ioannis</creatorcontrib><creatorcontrib>Sariyildiz, Sevil</creatorcontrib><creatorcontrib>Tasgetiren, M. Fatih</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ugurlu, Cemre</au><au>Chatzikonstantinou, Ioannis</au><au>Sariyildiz, Sevil</au><au>Tasgetiren, M. Fatih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary computation for architectural design of restaurant layouts</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>2279</spage><epage>2286</epage><pages>2279-2286</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257166</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2279-2286 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7257166 |
source | IEEE Xplore All Conference Series |
subjects | architectural design Buildings evolutionary algorithms Genetic algorithms Investment layout design multi-objective optimization Optimization parametric model pareto Sociology Sorting Statistics |
title | Evolutionary computation for architectural design of restaurant layouts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20computation%20for%20architectural%20design%20of%20restaurant%20layouts&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Ugurlu,%20Cemre&rft.date=2015-05-01&rft.spage=2279&rft.epage=2286&rft.pages=2279-2286&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257166&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&rft_dat=%3Cieee_CHZPO%3E7257166%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257166&rfr_iscdi=true |