Loading…

Evolutionary computation for architectural design of restaurant layouts

This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and p...

Full description

Saved in:
Bibliographic Details
Main Authors: Ugurlu, Cemre, Chatzikonstantinou, Ioannis, Sariyildiz, Sevil, Tasgetiren, M. Fatih
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2286
container_issue
container_start_page 2279
container_title
container_volume
creator Ugurlu, Cemre
Chatzikonstantinou, Ioannis
Sariyildiz, Sevil
Tasgetiren, M. Fatih
description This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.
doi_str_mv 10.1109/CEC.2015.7257166
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7257166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257166</ieee_id><sourcerecordid>7257166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353</originalsourceid><addsrcrecordid>eNotjz1PwzAYhA0CibawI7H4DyS8r-34Y0RRKEiVWDqwVa7tQFAaV7GD1H9PUDvd3TOc7gh5RCgRwTzXTV0ywKpUrFIo5RVZolDGKGGYuiYLNAILACZvZg_aFErpzzuyTOkHAEWFZkHWzW_sp9zFwY4n6uLhOGX7H2kbR2pH993l4PI02p76kLqvgcaWjiFlO7Mh096e4pTTPbltbZ_Cw0VXZPvabOu3YvOxfq9fNkWHjOeCqz1ycIJ54Z3XUjHPpfVB740GyZUXzjBohbMSBQqAloGTmhslRcsrviJP59ouhLA7jt1hnr27_Od_7o5NWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary computation for architectural design of restaurant layouts</title><source>IEEE Xplore All Conference Series</source><creator>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</creator><creatorcontrib>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</creatorcontrib><description>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257166</identifier><language>eng</language><publisher>IEEE</publisher><subject>architectural design ; Buildings ; evolutionary algorithms ; Genetic algorithms ; Investment ; layout design ; multi-objective optimization ; Optimization ; parametric model ; pareto ; Sociology ; Sorting ; Statistics</subject><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2279-2286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ugurlu, Cemre</creatorcontrib><creatorcontrib>Chatzikonstantinou, Ioannis</creatorcontrib><creatorcontrib>Sariyildiz, Sevil</creatorcontrib><creatorcontrib>Tasgetiren, M. Fatih</creatorcontrib><title>Evolutionary computation for architectural design of restaurant layouts</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</description><subject>architectural design</subject><subject>Buildings</subject><subject>evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Investment</subject><subject>layout design</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>parametric model</subject><subject>pareto</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjz1PwzAYhA0CibawI7H4DyS8r-34Y0RRKEiVWDqwVa7tQFAaV7GD1H9PUDvd3TOc7gh5RCgRwTzXTV0ywKpUrFIo5RVZolDGKGGYuiYLNAILACZvZg_aFErpzzuyTOkHAEWFZkHWzW_sp9zFwY4n6uLhOGX7H2kbR2pH993l4PI02p76kLqvgcaWjiFlO7Mh096e4pTTPbltbZ_Cw0VXZPvabOu3YvOxfq9fNkWHjOeCqz1ycIJ54Z3XUjHPpfVB740GyZUXzjBohbMSBQqAloGTmhslRcsrviJP59ouhLA7jt1hnr27_Od_7o5NWg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ugurlu, Cemre</creator><creator>Chatzikonstantinou, Ioannis</creator><creator>Sariyildiz, Sevil</creator><creator>Tasgetiren, M. Fatih</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Evolutionary computation for architectural design of restaurant layouts</title><author>Ugurlu, Cemre ; Chatzikonstantinou, Ioannis ; Sariyildiz, Sevil ; Tasgetiren, M. Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>architectural design</topic><topic>Buildings</topic><topic>evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Investment</topic><topic>layout design</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>parametric model</topic><topic>pareto</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugurlu, Cemre</creatorcontrib><creatorcontrib>Chatzikonstantinou, Ioannis</creatorcontrib><creatorcontrib>Sariyildiz, Sevil</creatorcontrib><creatorcontrib>Tasgetiren, M. Fatih</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ugurlu, Cemre</au><au>Chatzikonstantinou, Ioannis</au><au>Sariyildiz, Sevil</au><au>Tasgetiren, M. Fatih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary computation for architectural design of restaurant layouts</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>2279</spage><epage>2286</epage><pages>2279-2286</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>This paper presents the results obtained by NSGA-II and DE on a restaurant layout optimization problem, trying to maximize total profit while minimizing investment. The problem entails the configuration of restaurant functions, the decisions regarding the restaurant shell composition (fraction and position of windows, dimensions), and how to shape and place the kitchen and service areas. The NSGA-II and DE algorithms are implemented in a Parametric Design Environment that is familiar in the architectural practice. We demonstrate that the DE algorithm achieves slightly better performance in terms of hypervolume calculation, and achieve promising results when the Pareto front approximation is examined. To the best of our knowledge, this is the first application of multi-objective approach for restaurant design.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257166</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2279-2286
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_7257166
source IEEE Xplore All Conference Series
subjects architectural design
Buildings
evolutionary algorithms
Genetic algorithms
Investment
layout design
multi-objective optimization
Optimization
parametric model
pareto
Sociology
Sorting
Statistics
title Evolutionary computation for architectural design of restaurant layouts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20computation%20for%20architectural%20design%20of%20restaurant%20layouts&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Ugurlu,%20Cemre&rft.date=2015-05-01&rft.spage=2279&rft.epage=2286&rft.pages=2279-2286&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257166&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&rft_dat=%3Cieee_CHZPO%3E7257166%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-37b130c42d4dcd8672d36ade8b980637d4c920f4ca6141400f20c6839764f353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257166&rfr_iscdi=true