Loading…

A modified choice function hyper-heuristic controlling unary and binary operators

Hyper-heuristics are a class of high-level search methodologies which operate on a search space of low-level heuristics or components, rather than on solutions directly. Traditional iterative selection hyper-heuristics rely on two key components, a heuristic selection method and a move acceptance cr...

Full description

Saved in:
Bibliographic Details
Main Authors: Drake, John H., Ozcan, Ender, Burke, Edmund K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyper-heuristics are a class of high-level search methodologies which operate on a search space of low-level heuristics or components, rather than on solutions directly. Traditional iterative selection hyper-heuristics rely on two key components, a heuristic selection method and a move acceptance criterion. Choice Function heuristic selection scores heuristics based on a combination of three measures, selecting the heuristic with the highest score. Modified Choice Function heuristic selection is a variant of the Choice Function which emphasises intensification over diversification within the heuristic search process. Previous work has shown that improved results are possible in some problem domains when using Modified Choice Function heuristic selection over the classic Choice Function, however in most of these cases crossover low-level heuristics (operators) are omitted. In this paper, we introduce crossover low-level heuristics into a Modified Choice Function selection hyper-heuristic and present results over six problem domains. It is observed that although on average there is an increase in performance when using crossover low-level heuristics, the benefit of using crossover can vary on a per-domain or per-instance basis.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2015.7257315