Loading…
Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set
An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field,...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 949 |
container_issue | |
container_start_page | 943 |
container_title | |
container_volume | |
creator | Zhai Jian-Jian Qin Sheng-Wu Chen Jian-Ping Han Xu-Dong Peng Shuaiying Chen Jun-Jun Liu Xu |
description | An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability. |
doi_str_mv | 10.1109/ICMTMA.2015.231 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7263727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7263727</ieee_id><sourcerecordid>7263727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3</originalsourceid><addsrcrecordid>eNotzMtOAjEUgOGaaCJB1i7c9AVmPKed9kyXiIgkEA1iXJIyPSONOJjp4OXtxcvqX3zJL8Q5Qo4I7nI6mi_nw1wBmlxpPBIDRyUWljRhofBY9BQayrAgfSoGKcU1KEvWgCl64mnBiX1bbeSukct90_BWXsfkU8etXMT0Iu9bDrHq4sE_YreR48-Om1glOX73273_hSufOPwcFrv980Y-cHcmTmq_TTz4b1883oyXo9tsdjeZjoazLCoou8zXtiYE7wBsCDqwcliuAe0BrK6MM84qH4Bqcq40QZcVuKKGUKypCsy6Ly7-vpGZV29tfPXt14qU1aRIfwM-tlIR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</creator><creatorcontrib>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</creatorcontrib><description>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</description><identifier>ISSN: 2157-1473</identifier><identifier>EISBN: 9781467371421</identifier><identifier>EISBN: 1467371432</identifier><identifier>EISBN: 9781467371438</identifier><identifier>EISBN: 1467371424</identifier><identifier>DOI: 10.1109/ICMTMA.2015.231</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>disaster risk of tunnel construction ; extenics ; Indexes ; Joints ; Predictive models ; Rocks ; rough set ; Set theory ; Stability criteria ; tunnel engineering ; weight coefficient</subject><ispartof>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015, p.943-949</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7263727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7263727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai Jian-Jian</creatorcontrib><creatorcontrib>Qin Sheng-Wu</creatorcontrib><creatorcontrib>Chen Jian-Ping</creatorcontrib><creatorcontrib>Han Xu-Dong</creatorcontrib><creatorcontrib>Peng Shuaiying</creatorcontrib><creatorcontrib>Chen Jun-Jun</creatorcontrib><creatorcontrib>Liu Xu</creatorcontrib><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><title>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation</title><addtitle>icmtma</addtitle><description>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</description><subject>disaster risk of tunnel construction</subject><subject>extenics</subject><subject>Indexes</subject><subject>Joints</subject><subject>Predictive models</subject><subject>Rocks</subject><subject>rough set</subject><subject>Set theory</subject><subject>Stability criteria</subject><subject>tunnel engineering</subject><subject>weight coefficient</subject><issn>2157-1473</issn><isbn>9781467371421</isbn><isbn>1467371432</isbn><isbn>9781467371438</isbn><isbn>1467371424</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtOAjEUgOGaaCJB1i7c9AVmPKed9kyXiIgkEA1iXJIyPSONOJjp4OXtxcvqX3zJL8Q5Qo4I7nI6mi_nw1wBmlxpPBIDRyUWljRhofBY9BQayrAgfSoGKcU1KEvWgCl64mnBiX1bbeSukct90_BWXsfkU8etXMT0Iu9bDrHq4sE_YreR48-Om1glOX73273_hSufOPwcFrv980Y-cHcmTmq_TTz4b1883oyXo9tsdjeZjoazLCoou8zXtiYE7wBsCDqwcliuAe0BrK6MM84qH4Bqcq40QZcVuKKGUKypCsy6Ly7-vpGZV29tfPXt14qU1aRIfwM-tlIR</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhai Jian-Jian</creator><creator>Qin Sheng-Wu</creator><creator>Chen Jian-Ping</creator><creator>Han Xu-Dong</creator><creator>Peng Shuaiying</creator><creator>Chen Jun-Jun</creator><creator>Liu Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150601</creationdate><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><author>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>disaster risk of tunnel construction</topic><topic>extenics</topic><topic>Indexes</topic><topic>Joints</topic><topic>Predictive models</topic><topic>Rocks</topic><topic>rough set</topic><topic>Set theory</topic><topic>Stability criteria</topic><topic>tunnel engineering</topic><topic>weight coefficient</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai Jian-Jian</creatorcontrib><creatorcontrib>Qin Sheng-Wu</creatorcontrib><creatorcontrib>Chen Jian-Ping</creatorcontrib><creatorcontrib>Han Xu-Dong</creatorcontrib><creatorcontrib>Peng Shuaiying</creatorcontrib><creatorcontrib>Chen Jun-Jun</creatorcontrib><creatorcontrib>Liu Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai Jian-Jian</au><au>Qin Sheng-Wu</au><au>Chen Jian-Ping</au><au>Han Xu-Dong</au><au>Peng Shuaiying</au><au>Chen Jun-Jun</au><au>Liu Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</atitle><btitle>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation</btitle><stitle>icmtma</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>943</spage><epage>949</epage><pages>943-949</pages><issn>2157-1473</issn><eisbn>9781467371421</eisbn><eisbn>1467371432</eisbn><eisbn>9781467371438</eisbn><eisbn>1467371424</eisbn><coden>IEEPAD</coden><abstract>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</abstract><pub>IEEE</pub><doi>10.1109/ICMTMA.2015.231</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-1473 |
ispartof | 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015, p.943-949 |
issn | 2157-1473 |
language | eng |
recordid | cdi_ieee_primary_7263727 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | disaster risk of tunnel construction extenics Indexes Joints Predictive models Rocks rough set Set theory Stability criteria tunnel engineering weight coefficient |
title | Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20Tunnel%20Disaster%20Risk%20Prediction%20with%20Extenics%20Evaluation%20Based%20on%20Rough%20Set&rft.btitle=2015%20Seventh%20International%20Conference%20on%20Measuring%20Technology%20and%20Mechatronics%20Automation&rft.au=Zhai%20Jian-Jian&rft.date=2015-06-01&rft.spage=943&rft.epage=949&rft.pages=943-949&rft.issn=2157-1473&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICMTMA.2015.231&rft.eisbn=9781467371421&rft.eisbn_list=1467371432&rft.eisbn_list=9781467371438&rft.eisbn_list=1467371424&rft_dat=%3Cieee_6IE%3E7263727%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7263727&rfr_iscdi=true |