Loading…

Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set

An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field,...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhai Jian-Jian, Qin Sheng-Wu, Chen Jian-Ping, Han Xu-Dong, Peng Shuaiying, Chen Jun-Jun, Liu Xu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 949
container_issue
container_start_page 943
container_title
container_volume
creator Zhai Jian-Jian
Qin Sheng-Wu
Chen Jian-Ping
Han Xu-Dong
Peng Shuaiying
Chen Jun-Jun
Liu Xu
description An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.
doi_str_mv 10.1109/ICMTMA.2015.231
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7263727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7263727</ieee_id><sourcerecordid>7263727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3</originalsourceid><addsrcrecordid>eNotzMtOAjEUgOGaaCJB1i7c9AVmPKed9kyXiIgkEA1iXJIyPSONOJjp4OXtxcvqX3zJL8Q5Qo4I7nI6mi_nw1wBmlxpPBIDRyUWljRhofBY9BQayrAgfSoGKcU1KEvWgCl64mnBiX1bbeSukct90_BWXsfkU8etXMT0Iu9bDrHq4sE_YreR48-Om1glOX73273_hSufOPwcFrv980Y-cHcmTmq_TTz4b1883oyXo9tsdjeZjoazLCoou8zXtiYE7wBsCDqwcliuAe0BrK6MM84qH4Bqcq40QZcVuKKGUKypCsy6Ly7-vpGZV29tfPXt14qU1aRIfwM-tlIR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</creator><creatorcontrib>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</creatorcontrib><description>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</description><identifier>ISSN: 2157-1473</identifier><identifier>EISBN: 9781467371421</identifier><identifier>EISBN: 1467371432</identifier><identifier>EISBN: 9781467371438</identifier><identifier>EISBN: 1467371424</identifier><identifier>DOI: 10.1109/ICMTMA.2015.231</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>disaster risk of tunnel construction ; extenics ; Indexes ; Joints ; Predictive models ; Rocks ; rough set ; Set theory ; Stability criteria ; tunnel engineering ; weight coefficient</subject><ispartof>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015, p.943-949</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7263727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7263727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai Jian-Jian</creatorcontrib><creatorcontrib>Qin Sheng-Wu</creatorcontrib><creatorcontrib>Chen Jian-Ping</creatorcontrib><creatorcontrib>Han Xu-Dong</creatorcontrib><creatorcontrib>Peng Shuaiying</creatorcontrib><creatorcontrib>Chen Jun-Jun</creatorcontrib><creatorcontrib>Liu Xu</creatorcontrib><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><title>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation</title><addtitle>icmtma</addtitle><description>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</description><subject>disaster risk of tunnel construction</subject><subject>extenics</subject><subject>Indexes</subject><subject>Joints</subject><subject>Predictive models</subject><subject>Rocks</subject><subject>rough set</subject><subject>Set theory</subject><subject>Stability criteria</subject><subject>tunnel engineering</subject><subject>weight coefficient</subject><issn>2157-1473</issn><isbn>9781467371421</isbn><isbn>1467371432</isbn><isbn>9781467371438</isbn><isbn>1467371424</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtOAjEUgOGaaCJB1i7c9AVmPKed9kyXiIgkEA1iXJIyPSONOJjp4OXtxcvqX3zJL8Q5Qo4I7nI6mi_nw1wBmlxpPBIDRyUWljRhofBY9BQayrAgfSoGKcU1KEvWgCl64mnBiX1bbeSukct90_BWXsfkU8etXMT0Iu9bDrHq4sE_YreR48-Om1glOX73273_hSufOPwcFrv980Y-cHcmTmq_TTz4b1883oyXo9tsdjeZjoazLCoou8zXtiYE7wBsCDqwcliuAe0BrK6MM84qH4Bqcq40QZcVuKKGUKypCsy6Ly7-vpGZV29tfPXt14qU1aRIfwM-tlIR</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhai Jian-Jian</creator><creator>Qin Sheng-Wu</creator><creator>Chen Jian-Ping</creator><creator>Han Xu-Dong</creator><creator>Peng Shuaiying</creator><creator>Chen Jun-Jun</creator><creator>Liu Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150601</creationdate><title>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</title><author>Zhai Jian-Jian ; Qin Sheng-Wu ; Chen Jian-Ping ; Han Xu-Dong ; Peng Shuaiying ; Chen Jun-Jun ; Liu Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>disaster risk of tunnel construction</topic><topic>extenics</topic><topic>Indexes</topic><topic>Joints</topic><topic>Predictive models</topic><topic>Rocks</topic><topic>rough set</topic><topic>Set theory</topic><topic>Stability criteria</topic><topic>tunnel engineering</topic><topic>weight coefficient</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai Jian-Jian</creatorcontrib><creatorcontrib>Qin Sheng-Wu</creatorcontrib><creatorcontrib>Chen Jian-Ping</creatorcontrib><creatorcontrib>Han Xu-Dong</creatorcontrib><creatorcontrib>Peng Shuaiying</creatorcontrib><creatorcontrib>Chen Jun-Jun</creatorcontrib><creatorcontrib>Liu Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai Jian-Jian</au><au>Qin Sheng-Wu</au><au>Chen Jian-Ping</au><au>Han Xu-Dong</au><au>Peng Shuaiying</au><au>Chen Jun-Jun</au><au>Liu Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set</atitle><btitle>2015 Seventh International Conference on Measuring Technology and Mechatronics Automation</btitle><stitle>icmtma</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>943</spage><epage>949</epage><pages>943-949</pages><issn>2157-1473</issn><eisbn>9781467371421</eisbn><eisbn>1467371432</eisbn><eisbn>9781467371438</eisbn><eisbn>1467371424</eisbn><coden>IEEPAD</coden><abstract>An improved extenics model was established to predict disaster risk grades of tunnel construction in this study. In the model, rough set theory (RS) was selected to determine the weight coefficients of indicators. Then, a case study was undertaken with the improved model. Based on the survey field, seven indicators were selected to estimate the risk of Shuangfeng tunnel. The result showed that the improved prediction model of tunnel construction disaster risk grades was reasonable for the tunnel and the improved model could precisely reflect the disaster risk grades of the tunnel construction with good engineering practicability.</abstract><pub>IEEE</pub><doi>10.1109/ICMTMA.2015.231</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-1473
ispartof 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015, p.943-949
issn 2157-1473
language eng
recordid cdi_ieee_primary_7263727
source IEEE Electronic Library (IEL) Conference Proceedings
subjects disaster risk of tunnel construction
extenics
Indexes
Joints
Predictive models
Rocks
rough set
Set theory
Stability criteria
tunnel engineering
weight coefficient
title Research on Tunnel Disaster Risk Prediction with Extenics Evaluation Based on Rough Set
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20Tunnel%20Disaster%20Risk%20Prediction%20with%20Extenics%20Evaluation%20Based%20on%20Rough%20Set&rft.btitle=2015%20Seventh%20International%20Conference%20on%20Measuring%20Technology%20and%20Mechatronics%20Automation&rft.au=Zhai%20Jian-Jian&rft.date=2015-06-01&rft.spage=943&rft.epage=949&rft.pages=943-949&rft.issn=2157-1473&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICMTMA.2015.231&rft.eisbn=9781467371421&rft.eisbn_list=1467371432&rft.eisbn_list=9781467371438&rft.eisbn_list=1467371424&rft_dat=%3Cieee_6IE%3E7263727%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-af6f710a9006dd3de2918b016af663c595962ad07f79985d38c094f0d4b7cdee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7263727&rfr_iscdi=true