Loading…

Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF

This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact len...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2015, Vol.3, p.1672-1683
Main Authors: Doyle, James S., Bowyer, Kevin W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33
cites cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33
container_end_page 1683
container_issue
container_start_page 1672
container_title IEEE access
container_volume 3
creator Doyle, James S.
Bowyer, Kevin W.
description This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.
doi_str_mv 10.1109/ACCESS.2015.2477470
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7264974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7264974</ieee_id><doaj_id>oai_doaj_org_article_fe2a5b1ccbc24f90bf70cc99aaa8754c</doaj_id><sourcerecordid>2456380494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRUNRf0E3AdWvemSx1fFUKgtV1SDJ3SkqdaJKC_nunnSLeTS6Hc84NfFU1IXhGCNbXN01zv1zOKCZiRrlSXOGj6owSqadMMHn8bz-tLnNe42HqQRLqrHp-jW6bC7qDAr6E2KPYoTf4LtsELWpiX6wvaAF9hoxCj-YpZPQKPq76sLe_59Cv0O1y_nBRnXR2k-Hy8J5X7w_3b83TdPHyOG9uFlMvSV2mhLaeCaoVdYJ5oSwRoJytGbOOU1kT5qyUNXAGrms7rDRuieScDYLiwNh5NR9722jX5jOFD5t-TLTB7IWYVsamEvwGTAfUCke8d57yTmPXKey91tbaWgnuh66rseszxa8t5GLWcZv64fuGciFZjbnmg4uNLp9izgm6v6sEmx0DMzIwOwbmwGBITcZUAIC_hKKSa8XZL8I3gS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456380494</pqid></control><display><type>article</type><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><source>IEEE Open Access Journals</source><creator>Doyle, James S. ; Bowyer, Kevin W.</creator><creatorcontrib>Doyle, James S. ; Bowyer, Kevin W.</creatorcontrib><description>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2015.2477470</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biometric recognition systems ; Classification algorithms ; Contact lenses ; Detection algorithms ; Detectors ; Eyes ; Image acquisition ; Image classification ; Image processing ; Image segmentation ; Iris recognition ; Lenses ; Object recognition ; Robustness ; Sensors</subject><ispartof>IEEE access, 2015, Vol.3, p.1672-1683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</citedby><cites>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7264974$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Doyle, James S.</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</description><subject>Algorithms</subject><subject>Biometric recognition systems</subject><subject>Classification algorithms</subject><subject>Contact lenses</subject><subject>Detection algorithms</subject><subject>Detectors</subject><subject>Eyes</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Lenses</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRUNRf0E3AdWvemSx1fFUKgtV1SDJ3SkqdaJKC_nunnSLeTS6Hc84NfFU1IXhGCNbXN01zv1zOKCZiRrlSXOGj6owSqadMMHn8bz-tLnNe42HqQRLqrHp-jW6bC7qDAr6E2KPYoTf4LtsELWpiX6wvaAF9hoxCj-YpZPQKPq76sLe_59Cv0O1y_nBRnXR2k-Hy8J5X7w_3b83TdPHyOG9uFlMvSV2mhLaeCaoVdYJ5oSwRoJytGbOOU1kT5qyUNXAGrms7rDRuieScDYLiwNh5NR9722jX5jOFD5t-TLTB7IWYVsamEvwGTAfUCke8d57yTmPXKey91tbaWgnuh66rseszxa8t5GLWcZv64fuGciFZjbnmg4uNLp9izgm6v6sEmx0DMzIwOwbmwGBITcZUAIC_hKKSa8XZL8I3gS8</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Doyle, James S.</creator><creator>Bowyer, Kevin W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><author>Doyle, James S. ; Bowyer, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biometric recognition systems</topic><topic>Classification algorithms</topic><topic>Contact lenses</topic><topic>Detection algorithms</topic><topic>Detectors</topic><topic>Eyes</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Lenses</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyle, James S.</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyle, James S.</au><au>Bowyer, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2015</date><risdate>2015</risdate><volume>3</volume><spage>1672</spage><epage>1683</epage><pages>1672-1683</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2015.2477470</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2015, Vol.3, p.1672-1683
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_7264974
source IEEE Open Access Journals
subjects Algorithms
Biometric recognition systems
Classification algorithms
Contact lenses
Detection algorithms
Detectors
Eyes
Image acquisition
Image classification
Image processing
Image segmentation
Iris recognition
Lenses
Object recognition
Robustness
Sensors
title Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Detection%20of%20Textured%20Contact%20Lenses%20in%20Iris%20Recognition%20Using%20BSIF&rft.jtitle=IEEE%20access&rft.au=Doyle,%20James%20S.&rft.date=2015&rft.volume=3&rft.spage=1672&rft.epage=1683&rft.pages=1672-1683&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2015.2477470&rft_dat=%3Cproquest_ieee_%3E2456380494%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456380494&rft_id=info:pmid/&rft_ieee_id=7264974&rfr_iscdi=true