Loading…
Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF
This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact len...
Saved in:
Published in: | IEEE access 2015, Vol.3, p.1672-1683 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33 |
container_end_page | 1683 |
container_issue | |
container_start_page | 1672 |
container_title | IEEE access |
container_volume | 3 |
creator | Doyle, James S. Bowyer, Kevin W. |
description | This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection. |
doi_str_mv | 10.1109/ACCESS.2015.2477470 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7264974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7264974</ieee_id><doaj_id>oai_doaj_org_article_fe2a5b1ccbc24f90bf70cc99aaa8754c</doaj_id><sourcerecordid>2456380494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRUNRf0E3AdWvemSx1fFUKgtV1SDJ3SkqdaJKC_nunnSLeTS6Hc84NfFU1IXhGCNbXN01zv1zOKCZiRrlSXOGj6owSqadMMHn8bz-tLnNe42HqQRLqrHp-jW6bC7qDAr6E2KPYoTf4LtsELWpiX6wvaAF9hoxCj-YpZPQKPq76sLe_59Cv0O1y_nBRnXR2k-Hy8J5X7w_3b83TdPHyOG9uFlMvSV2mhLaeCaoVdYJ5oSwRoJytGbOOU1kT5qyUNXAGrms7rDRuieScDYLiwNh5NR9722jX5jOFD5t-TLTB7IWYVsamEvwGTAfUCke8d57yTmPXKey91tbaWgnuh66rseszxa8t5GLWcZv64fuGciFZjbnmg4uNLp9izgm6v6sEmx0DMzIwOwbmwGBITcZUAIC_hKKSa8XZL8I3gS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456380494</pqid></control><display><type>article</type><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><source>IEEE Open Access Journals</source><creator>Doyle, James S. ; Bowyer, Kevin W.</creator><creatorcontrib>Doyle, James S. ; Bowyer, Kevin W.</creatorcontrib><description>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2015.2477470</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biometric recognition systems ; Classification algorithms ; Contact lenses ; Detection algorithms ; Detectors ; Eyes ; Image acquisition ; Image classification ; Image processing ; Image segmentation ; Iris recognition ; Lenses ; Object recognition ; Robustness ; Sensors</subject><ispartof>IEEE access, 2015, Vol.3, p.1672-1683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</citedby><cites>FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7264974$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Doyle, James S.</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</description><subject>Algorithms</subject><subject>Biometric recognition systems</subject><subject>Classification algorithms</subject><subject>Contact lenses</subject><subject>Detection algorithms</subject><subject>Detectors</subject><subject>Eyes</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Lenses</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRUNRf0E3AdWvemSx1fFUKgtV1SDJ3SkqdaJKC_nunnSLeTS6Hc84NfFU1IXhGCNbXN01zv1zOKCZiRrlSXOGj6owSqadMMHn8bz-tLnNe42HqQRLqrHp-jW6bC7qDAr6E2KPYoTf4LtsELWpiX6wvaAF9hoxCj-YpZPQKPq76sLe_59Cv0O1y_nBRnXR2k-Hy8J5X7w_3b83TdPHyOG9uFlMvSV2mhLaeCaoVdYJ5oSwRoJytGbOOU1kT5qyUNXAGrms7rDRuieScDYLiwNh5NR9722jX5jOFD5t-TLTB7IWYVsamEvwGTAfUCke8d57yTmPXKey91tbaWgnuh66rseszxa8t5GLWcZv64fuGciFZjbnmg4uNLp9izgm6v6sEmx0DMzIwOwbmwGBITcZUAIC_hKKSa8XZL8I3gS8</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Doyle, James S.</creator><creator>Bowyer, Kevin W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</title><author>Doyle, James S. ; Bowyer, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biometric recognition systems</topic><topic>Classification algorithms</topic><topic>Contact lenses</topic><topic>Detection algorithms</topic><topic>Detectors</topic><topic>Eyes</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Lenses</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyle, James S.</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyle, James S.</au><au>Bowyer, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2015</date><risdate>2015</risdate><volume>3</volume><spage>1672</spage><epage>1683</epage><pages>1672-1683</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers three issues that arise in creating an algorithm for the robust detection of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our experimental results suggest that accurate iris segmentation is not required. The second issue is whether an algorithm trained on the images acquired from one sensor will well generalize to the images acquired from a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct classification rate of a detection algorithm trained with the images from a different sensor. The third issue is how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper shows that a novel textured lens type may have a significant impact on the performance of textured lens detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2015.2477470</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2015, Vol.3, p.1672-1683 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_7264974 |
source | IEEE Open Access Journals |
subjects | Algorithms Biometric recognition systems Classification algorithms Contact lenses Detection algorithms Detectors Eyes Image acquisition Image classification Image processing Image segmentation Iris recognition Lenses Object recognition Robustness Sensors |
title | Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Detection%20of%20Textured%20Contact%20Lenses%20in%20Iris%20Recognition%20Using%20BSIF&rft.jtitle=IEEE%20access&rft.au=Doyle,%20James%20S.&rft.date=2015&rft.volume=3&rft.spage=1672&rft.epage=1683&rft.pages=1672-1683&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2015.2477470&rft_dat=%3Cproquest_ieee_%3E2456380494%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-12dc352972b53c57a15e7ba833ab426813ba668e43ebfdf0790d1644343e74e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456380494&rft_id=info:pmid/&rft_ieee_id=7264974&rfr_iscdi=true |