Loading…
Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters
In this paper, we propose and study several new designs of a shunt capacitor filter with two surface-mount technology capacitors. These designs make use of mutual inductance effects to increase the attenuation provided by the filter in the range of high frequencies where the filter behaves inductive...
Saved in:
Published in: | IEEE transactions on electromagnetic compatibility 2015-12, Vol.57 (6), p.1408-1415 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3 |
container_end_page | 1415 |
container_issue | 6 |
container_start_page | 1408 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 57 |
creator | Bernal, Joaquin Freire, Manuel J. Ramiro, Sebastian |
description | In this paper, we propose and study several new designs of a shunt capacitor filter with two surface-mount technology capacitors. These designs make use of mutual inductance effects to increase the attenuation provided by the filter in the range of high frequencies where the filter behaves inductively. We provide lumped element circuit models for the proposed designs that allow identification of the key inductive parameters that determine the high-frequency performance of these filters. We obtain the equations relating these parameters to the effective inductance of the filter, which can be used to compare the high-frequency behavior of different filter designs. We have fabricated and measured several compact shunt capacitor filters with improved performance at high frequencies. We have found that, compared with a shunt capacitor filter with one capacitor, a proper filter design with two capacitors can easily increase in 15-20 dB the high-frequency attenuation provided by the filter. This design also outperforms by 10-15 dB a traditional shunt capacitor filter with two capacitors closely placed. Moreover, this improvement is obtained with no increase in size, cost, or time of design of the filter. |
doi_str_mv | 10.1109/TEMC.2015.2478058 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7275128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7275128</ieee_id><sourcerecordid>3899047291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNR-bbnKUtdWCRdEWvIVsOtEt292aj4P_3tQWD55mhnneYXgQuiR4RAiWt4vJvBpRTPiIFqXAXByhAeFc5ESU78dogDERuWQlP0Vn3q_TWHDKBuh16SHrbTaPIeo2q_q4bZvuIwt9dg_GgU7rF-20b0Jjslm3iibozvxm3j5jF7JKb7VpQu-yadMGcP4cnVjderg41CFaTieL6jF_en6YVXdPuSkYD7kAKUGzFbW1qJmk9dhygQ1QbawEjjnVmAqwlEnOMOCVpDT10taEcagNG6Kb_d2t678i-KA2jTfQtrqDPnpFSslowQqKE3r9D1330XXpu0RxjAWX5ThRZE8Z13vvwKqtazbafSuC1c6y2llWO8vqYDllrvaZBgD--JKWnFDBfgBLAXew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085976</pqid></control><display><type>article</type><title>Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters</title><source>IEEE Xplore (Online service)</source><creator>Bernal, Joaquin ; Freire, Manuel J. ; Ramiro, Sebastian</creator><creatorcontrib>Bernal, Joaquin ; Freire, Manuel J. ; Ramiro, Sebastian</creatorcontrib><description>In this paper, we propose and study several new designs of a shunt capacitor filter with two surface-mount technology capacitors. These designs make use of mutual inductance effects to increase the attenuation provided by the filter in the range of high frequencies where the filter behaves inductively. We provide lumped element circuit models for the proposed designs that allow identification of the key inductive parameters that determine the high-frequency performance of these filters. We obtain the equations relating these parameters to the effective inductance of the filter, which can be used to compare the high-frequency behavior of different filter designs. We have fabricated and measured several compact shunt capacitor filters with improved performance at high frequencies. We have found that, compared with a shunt capacitor filter with one capacitor, a proper filter design with two capacitors can easily increase in 15-20 dB the high-frequency attenuation provided by the filter. This design also outperforms by 10-15 dB a traditional shunt capacitor filter with two capacitors closely placed. Moreover, this improvement is obtained with no increase in size, cost, or time of design of the filter.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2015.2478058</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Capacitors ; Couplings ; Electromagnetic compatibility ; EMI filters ; High frequencies ; high-frequency effects ; Inductance ; Integrated circuit modeling ; Mathematical models ; Mutual coupling ; Noise levels ; parasitic inductance ; Resonant frequency ; shunt capacitor filters ; Shunt capacitors</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1408-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3</citedby><cites>FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3</cites><orcidid>0000-0003-0133-4814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7275128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Bernal, Joaquin</creatorcontrib><creatorcontrib>Freire, Manuel J.</creatorcontrib><creatorcontrib>Ramiro, Sebastian</creatorcontrib><title>Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>In this paper, we propose and study several new designs of a shunt capacitor filter with two surface-mount technology capacitors. These designs make use of mutual inductance effects to increase the attenuation provided by the filter in the range of high frequencies where the filter behaves inductively. We provide lumped element circuit models for the proposed designs that allow identification of the key inductive parameters that determine the high-frequency performance of these filters. We obtain the equations relating these parameters to the effective inductance of the filter, which can be used to compare the high-frequency behavior of different filter designs. We have fabricated and measured several compact shunt capacitor filters with improved performance at high frequencies. We have found that, compared with a shunt capacitor filter with one capacitor, a proper filter design with two capacitors can easily increase in 15-20 dB the high-frequency attenuation provided by the filter. This design also outperforms by 10-15 dB a traditional shunt capacitor filter with two capacitors closely placed. Moreover, this improvement is obtained with no increase in size, cost, or time of design of the filter.</description><subject>Attenuation</subject><subject>Capacitors</subject><subject>Couplings</subject><subject>Electromagnetic compatibility</subject><subject>EMI filters</subject><subject>High frequencies</subject><subject>high-frequency effects</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Mutual coupling</subject><subject>Noise levels</subject><subject>parasitic inductance</subject><subject>Resonant frequency</subject><subject>shunt capacitor filters</subject><subject>Shunt capacitors</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNR-bbnKUtdWCRdEWvIVsOtEt292aj4P_3tQWD55mhnneYXgQuiR4RAiWt4vJvBpRTPiIFqXAXByhAeFc5ESU78dogDERuWQlP0Vn3q_TWHDKBuh16SHrbTaPIeo2q_q4bZvuIwt9dg_GgU7rF-20b0Jjslm3iibozvxm3j5jF7JKb7VpQu-yadMGcP4cnVjderg41CFaTieL6jF_en6YVXdPuSkYD7kAKUGzFbW1qJmk9dhygQ1QbawEjjnVmAqwlEnOMOCVpDT10taEcagNG6Kb_d2t678i-KA2jTfQtrqDPnpFSslowQqKE3r9D1330XXpu0RxjAWX5ThRZE8Z13vvwKqtazbafSuC1c6y2llWO8vqYDllrvaZBgD--JKWnFDBfgBLAXew</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Bernal, Joaquin</creator><creator>Freire, Manuel J.</creator><creator>Ramiro, Sebastian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-0133-4814</orcidid></search><sort><creationdate>20151201</creationdate><title>Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters</title><author>Bernal, Joaquin ; Freire, Manuel J. ; Ramiro, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Attenuation</topic><topic>Capacitors</topic><topic>Couplings</topic><topic>Electromagnetic compatibility</topic><topic>EMI filters</topic><topic>High frequencies</topic><topic>high-frequency effects</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Mutual coupling</topic><topic>Noise levels</topic><topic>parasitic inductance</topic><topic>Resonant frequency</topic><topic>shunt capacitor filters</topic><topic>Shunt capacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernal, Joaquin</creatorcontrib><creatorcontrib>Freire, Manuel J.</creatorcontrib><creatorcontrib>Ramiro, Sebastian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernal, Joaquin</au><au>Freire, Manuel J.</au><au>Ramiro, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>57</volume><issue>6</issue><spage>1408</spage><epage>1415</epage><pages>1408-1415</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>In this paper, we propose and study several new designs of a shunt capacitor filter with two surface-mount technology capacitors. These designs make use of mutual inductance effects to increase the attenuation provided by the filter in the range of high frequencies where the filter behaves inductively. We provide lumped element circuit models for the proposed designs that allow identification of the key inductive parameters that determine the high-frequency performance of these filters. We obtain the equations relating these parameters to the effective inductance of the filter, which can be used to compare the high-frequency behavior of different filter designs. We have fabricated and measured several compact shunt capacitor filters with improved performance at high frequencies. We have found that, compared with a shunt capacitor filter with one capacitor, a proper filter design with two capacitors can easily increase in 15-20 dB the high-frequency attenuation provided by the filter. This design also outperforms by 10-15 dB a traditional shunt capacitor filter with two capacitors closely placed. Moreover, this improvement is obtained with no increase in size, cost, or time of design of the filter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2015.2478058</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0133-4814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1408-1415 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_ieee_primary_7275128 |
source | IEEE Xplore (Online service) |
subjects | Attenuation Capacitors Couplings Electromagnetic compatibility EMI filters High frequencies high-frequency effects Inductance Integrated circuit modeling Mathematical models Mutual coupling Noise levels parasitic inductance Resonant frequency shunt capacitor filters Shunt capacitors |
title | Use of Mutual Coupling to Decrease Parasitic Inductance of Shunt Capacitor Filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Mutual%20Coupling%20to%20Decrease%20Parasitic%20Inductance%20of%20Shunt%20Capacitor%20Filters&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Bernal,%20Joaquin&rft.date=2015-12-01&rft.volume=57&rft.issue=6&rft.spage=1408&rft.epage=1415&rft.pages=1408-1415&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2015.2478058&rft_dat=%3Cproquest_ieee_%3E3899047291%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-8e99ea3d2fb8b392b6f580ce2acf9e5052a028ef239530e0d9222399fb135ebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1750085976&rft_id=info:pmid/&rft_ieee_id=7275128&rfr_iscdi=true |