Loading…
MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data
Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost...
Saved in:
Published in: | IEEE sensors journal 2016-01, Vol.16 (2), p.485-497 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13 |
container_end_page | 497 |
container_issue | 2 |
container_start_page | 485 |
container_title | IEEE sensors journal |
container_volume | 16 |
creator | Kang, Yong-Shin Park, Il-Ha Rhee, Jongtae Lee, Yong-Han |
description | Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data. |
doi_str_mv | 10.1109/JSEN.2015.2483499 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7279070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7279070</ieee_id><sourcerecordid>3905926671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGExH9AcZLEy9eCvvJdI9iATGoiWDibbPSKSmBLu6WA__ebSAePM1k5pnJm4eQW0Z7jFHdf5mP3nqcMtXjMhNS6zPSYUplKQOZnbe9oKkU8HVJrkJYU8o0KOiQ8aurVy4fpkMbsEg-cOdC1Th_SHIM1apOSueTqVukE6zR26ZlxtO8P8c6xM2wWiW5bew1uSjtJuDNqXbJ53i0eHpOZ--T6dPjLF0KPmhSXSqhinLASwkaKViF31wDg2IpheBWiqIAyywrGY_DTMeYFApKi0xYZZnokofj3513P3sMjdlWYYmbja3R7YNhoAUHCapF7_-ha7f3dUwXKcWpoAMqIsWO1NK7EDyWZuerrfUHw6hpzZrWrGnNmpPZeHN3vKkQ8Y8HDjErFb_pwHFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752030603</pqid></control><display><type>article</type><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><source>IEEE Xplore (Online service)</source><creator>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</creator><creatorcontrib>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</creatorcontrib><description>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2015.2483499</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Data base management systems ; Data management ; Data models ; Data processing ; Design engineering ; Distributed databases ; EPCIS ; Internet of Things ; IoT ; MongoDB ; Radio frequency identification ; Radiofrequency identification ; Relational databases ; Repositories ; RFID ; Sensor ; Sensors ; Supply Chain</subject><ispartof>IEEE sensors journal, 2016-01, Vol.16 (2), p.485-497</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</citedby><cites>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7279070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kang, Yong-Shin</creatorcontrib><creatorcontrib>Park, Il-Ha</creatorcontrib><creatorcontrib>Rhee, Jongtae</creatorcontrib><creatorcontrib>Lee, Yong-Han</creatorcontrib><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</description><subject>Big Data</subject><subject>Data base management systems</subject><subject>Data management</subject><subject>Data models</subject><subject>Data processing</subject><subject>Design engineering</subject><subject>Distributed databases</subject><subject>EPCIS</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>MongoDB</subject><subject>Radio frequency identification</subject><subject>Radiofrequency identification</subject><subject>Relational databases</subject><subject>Repositories</subject><subject>RFID</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Supply Chain</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwkAQhjdGExH9AcZLEy9eCvvJdI9iATGoiWDibbPSKSmBLu6WA__ebSAePM1k5pnJm4eQW0Z7jFHdf5mP3nqcMtXjMhNS6zPSYUplKQOZnbe9oKkU8HVJrkJYU8o0KOiQ8aurVy4fpkMbsEg-cOdC1Th_SHIM1apOSueTqVukE6zR26ZlxtO8P8c6xM2wWiW5bew1uSjtJuDNqXbJ53i0eHpOZ--T6dPjLF0KPmhSXSqhinLASwkaKViF31wDg2IpheBWiqIAyywrGY_DTMeYFApKi0xYZZnokofj3513P3sMjdlWYYmbja3R7YNhoAUHCapF7_-ha7f3dUwXKcWpoAMqIsWO1NK7EDyWZuerrfUHw6hpzZrWrGnNmpPZeHN3vKkQ8Y8HDjErFb_pwHFQ</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Kang, Yong-Shin</creator><creator>Park, Il-Ha</creator><creator>Rhee, Jongtae</creator><creator>Lee, Yong-Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160115</creationdate><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><author>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Data base management systems</topic><topic>Data management</topic><topic>Data models</topic><topic>Data processing</topic><topic>Design engineering</topic><topic>Distributed databases</topic><topic>EPCIS</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>MongoDB</topic><topic>Radio frequency identification</topic><topic>Radiofrequency identification</topic><topic>Relational databases</topic><topic>Repositories</topic><topic>RFID</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Supply Chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yong-Shin</creatorcontrib><creatorcontrib>Park, Il-Ha</creatorcontrib><creatorcontrib>Rhee, Jongtae</creatorcontrib><creatorcontrib>Lee, Yong-Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yong-Shin</au><au>Park, Il-Ha</au><au>Rhee, Jongtae</au><au>Lee, Yong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-01-15</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>485</spage><epage>497</epage><pages>485-497</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2015.2483499</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2016-01, Vol.16 (2), p.485-497 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_7279070 |
source | IEEE Xplore (Online service) |
subjects | Big Data Data base management systems Data management Data models Data processing Design engineering Distributed databases EPCIS Internet of Things IoT MongoDB Radio frequency identification Radiofrequency identification Relational databases Repositories RFID Sensor Sensors Supply Chain |
title | MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MongoDB-Based%20Repository%20Design%20for%20IoT-Generated%20RFID/Sensor%20Big%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kang,%20Yong-Shin&rft.date=2016-01-15&rft.volume=16&rft.issue=2&rft.spage=485&rft.epage=497&rft.pages=485-497&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2015.2483499&rft_dat=%3Cproquest_ieee_%3E3905926671%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752030603&rft_id=info:pmid/&rft_ieee_id=7279070&rfr_iscdi=true |