Loading…

MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data

Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2016-01, Vol.16 (2), p.485-497
Main Authors: Kang, Yong-Shin, Park, Il-Ha, Rhee, Jongtae, Lee, Yong-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13
cites cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13
container_end_page 497
container_issue 2
container_start_page 485
container_title IEEE sensors journal
container_volume 16
creator Kang, Yong-Shin
Park, Il-Ha
Rhee, Jongtae
Lee, Yong-Han
description Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.
doi_str_mv 10.1109/JSEN.2015.2483499
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7279070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7279070</ieee_id><sourcerecordid>3905926671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGExH9AcZLEy9eCvvJdI9iATGoiWDibbPSKSmBLu6WA__ebSAePM1k5pnJm4eQW0Z7jFHdf5mP3nqcMtXjMhNS6zPSYUplKQOZnbe9oKkU8HVJrkJYU8o0KOiQ8aurVy4fpkMbsEg-cOdC1Th_SHIM1apOSueTqVukE6zR26ZlxtO8P8c6xM2wWiW5bew1uSjtJuDNqXbJ53i0eHpOZ--T6dPjLF0KPmhSXSqhinLASwkaKViF31wDg2IpheBWiqIAyywrGY_DTMeYFApKi0xYZZnokofj3513P3sMjdlWYYmbja3R7YNhoAUHCapF7_-ha7f3dUwXKcWpoAMqIsWO1NK7EDyWZuerrfUHw6hpzZrWrGnNmpPZeHN3vKkQ8Y8HDjErFb_pwHFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752030603</pqid></control><display><type>article</type><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><source>IEEE Xplore (Online service)</source><creator>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</creator><creatorcontrib>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</creatorcontrib><description>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2015.2483499</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Data base management systems ; Data management ; Data models ; Data processing ; Design engineering ; Distributed databases ; EPCIS ; Internet of Things ; IoT ; MongoDB ; Radio frequency identification ; Radiofrequency identification ; Relational databases ; Repositories ; RFID ; Sensor ; Sensors ; Supply Chain</subject><ispartof>IEEE sensors journal, 2016-01, Vol.16 (2), p.485-497</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</citedby><cites>FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7279070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kang, Yong-Shin</creatorcontrib><creatorcontrib>Park, Il-Ha</creatorcontrib><creatorcontrib>Rhee, Jongtae</creatorcontrib><creatorcontrib>Lee, Yong-Han</creatorcontrib><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</description><subject>Big Data</subject><subject>Data base management systems</subject><subject>Data management</subject><subject>Data models</subject><subject>Data processing</subject><subject>Design engineering</subject><subject>Distributed databases</subject><subject>EPCIS</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>MongoDB</subject><subject>Radio frequency identification</subject><subject>Radiofrequency identification</subject><subject>Relational databases</subject><subject>Repositories</subject><subject>RFID</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Supply Chain</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwkAQhjdGExH9AcZLEy9eCvvJdI9iATGoiWDibbPSKSmBLu6WA__ebSAePM1k5pnJm4eQW0Z7jFHdf5mP3nqcMtXjMhNS6zPSYUplKQOZnbe9oKkU8HVJrkJYU8o0KOiQ8aurVy4fpkMbsEg-cOdC1Th_SHIM1apOSueTqVukE6zR26ZlxtO8P8c6xM2wWiW5bew1uSjtJuDNqXbJ53i0eHpOZ--T6dPjLF0KPmhSXSqhinLASwkaKViF31wDg2IpheBWiqIAyywrGY_DTMeYFApKi0xYZZnokofj3513P3sMjdlWYYmbja3R7YNhoAUHCapF7_-ha7f3dUwXKcWpoAMqIsWO1NK7EDyWZuerrfUHw6hpzZrWrGnNmpPZeHN3vKkQ8Y8HDjErFb_pwHFQ</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Kang, Yong-Shin</creator><creator>Park, Il-Ha</creator><creator>Rhee, Jongtae</creator><creator>Lee, Yong-Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160115</creationdate><title>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</title><author>Kang, Yong-Shin ; Park, Il-Ha ; Rhee, Jongtae ; Lee, Yong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Data base management systems</topic><topic>Data management</topic><topic>Data models</topic><topic>Data processing</topic><topic>Design engineering</topic><topic>Distributed databases</topic><topic>EPCIS</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>MongoDB</topic><topic>Radio frequency identification</topic><topic>Radiofrequency identification</topic><topic>Relational databases</topic><topic>Repositories</topic><topic>RFID</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Supply Chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yong-Shin</creatorcontrib><creatorcontrib>Park, Il-Ha</creatorcontrib><creatorcontrib>Rhee, Jongtae</creatorcontrib><creatorcontrib>Lee, Yong-Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yong-Shin</au><au>Park, Il-Ha</au><au>Rhee, Jongtae</au><au>Lee, Yong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-01-15</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>485</spage><epage>497</epage><pages>485-497</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Internet of Things (IoT)-generated data are characterized by its continuous generation, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such IoT-generated data due to the limited processing speed and the significant storage-expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement IoT-generated data repositories. In this paper, we propose a sensor-integrated radio frequency identification (RFID) data repository-implementation model using MongoDB, the most popular big data-savvy document-oriented database system now. First, we devise a data repository schema that can effectively integrate and store the heterogeneous IoT data sources, such as RFID, sensor, and GPS, by extending the event data types in electronic product code information services standard, a de facto standard for the information exchange services for RFID-based traceability. Second, we propose an effective shard key to maximize query speed and uniform data distribution over data servers. Last, through a series of experiments measuring query speed and the level of data distribution, we show that the proposed design strategy, which is based on horizontal data partitioning and a compound shard key, is effective and efficient for the IoT-generated RFID/sensor big data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2015.2483499</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2016-01, Vol.16 (2), p.485-497
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_7279070
source IEEE Xplore (Online service)
subjects Big Data
Data base management systems
Data management
Data models
Data processing
Design engineering
Distributed databases
EPCIS
Internet of Things
IoT
MongoDB
Radio frequency identification
Radiofrequency identification
Relational databases
Repositories
RFID
Sensor
Sensors
Supply Chain
title MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MongoDB-Based%20Repository%20Design%20for%20IoT-Generated%20RFID/Sensor%20Big%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kang,%20Yong-Shin&rft.date=2016-01-15&rft.volume=16&rft.issue=2&rft.spage=485&rft.epage=497&rft.pages=485-497&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2015.2483499&rft_dat=%3Cproquest_ieee_%3E3905926671%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-9f535df62f479e07a5eb29717dc4332a43dd7a1a1f1217d8901907d00d83a5a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752030603&rft_id=info:pmid/&rft_ieee_id=7279070&rfr_iscdi=true