Loading…
Growing Hierarchical Trees for Data Stream clustering and visualization
Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nhat-Quang Doan Ghesmoune, Mohammed Azzag, Hanane Lebbah, Mustapha |
description | Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets. |
doi_str_mv | 10.1109/IJCNN.2015.7280397 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_7280397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7280397</ieee_id><sourcerecordid>1770322623</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963</originalsourceid><addsrcrecordid>eNo1kLFOwzAURQ0CiVL6A7BkZEl59nPieEQF0qKqDJQ5cuIXMEqTYicg-HqKWqZ7h6Mj3cvYJYcp56BvFo-z1WoqgCdTJTJArY7YRKuMS6U11ynIYzYSPOWxlKBO_jtqPGPnIbwDCNQaRyzPfffl2tdo7sgbX725yjTR2hOFqO58dGd6Ez33nswmqpoh9OT_aNPa6NOFwTTux_Suay_YaW2aQJNDjtnLw_16No-XT_lidruMnYCsj2VSo0FRlpSlhhKg1KoaStQZCIvEEyQLCIkCJS0iWiGt1cRLSRnuduGYXe-9W999DBT6YuNCRU1jWuqGUHClAIVIBe7Qqz3qiKjYercx_rs43IW_Oo5bxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770322623</pqid></control><display><type>conference_proceeding</type><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</creator><creatorcontrib>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</creatorcontrib><description>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</description><identifier>ISSN: 2161-4393</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781479919604</identifier><identifier>EISBN: 1479919608</identifier><identifier>DOI: 10.1109/IJCNN.2015.7280397</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering ; Complexity theory ; Construction ; Data points ; data stream ; Data transmission ; hierarchical tree ; Legged locomotion ; Networks ; neural gas ; neural network ; Neurons ; Software ; Topology ; Visualization</subject><ispartof>2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7280397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7280397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nhat-Quang Doan</creatorcontrib><creatorcontrib>Ghesmoune, Mohammed</creatorcontrib><creatorcontrib>Azzag, Hanane</creatorcontrib><creatorcontrib>Lebbah, Mustapha</creatorcontrib><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><title>2015 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</description><subject>Clustering</subject><subject>Complexity theory</subject><subject>Construction</subject><subject>Data points</subject><subject>data stream</subject><subject>Data transmission</subject><subject>hierarchical tree</subject><subject>Legged locomotion</subject><subject>Networks</subject><subject>neural gas</subject><subject>neural network</subject><subject>Neurons</subject><subject>Software</subject><subject>Topology</subject><subject>Visualization</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781479919604</isbn><isbn>1479919608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kLFOwzAURQ0CiVL6A7BkZEl59nPieEQF0qKqDJQ5cuIXMEqTYicg-HqKWqZ7h6Mj3cvYJYcp56BvFo-z1WoqgCdTJTJArY7YRKuMS6U11ynIYzYSPOWxlKBO_jtqPGPnIbwDCNQaRyzPfffl2tdo7sgbX725yjTR2hOFqO58dGd6Ez33nswmqpoh9OT_aNPa6NOFwTTux_Suay_YaW2aQJNDjtnLw_16No-XT_lidruMnYCsj2VSo0FRlpSlhhKg1KoaStQZCIvEEyQLCIkCJS0iWiGt1cRLSRnuduGYXe-9W999DBT6YuNCRU1jWuqGUHClAIVIBe7Qqz3qiKjYercx_rs43IW_Oo5bxQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Nhat-Quang Doan</creator><creator>Ghesmoune, Mohammed</creator><creator>Azzag, Hanane</creator><creator>Lebbah, Mustapha</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><author>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clustering</topic><topic>Complexity theory</topic><topic>Construction</topic><topic>Data points</topic><topic>data stream</topic><topic>Data transmission</topic><topic>hierarchical tree</topic><topic>Legged locomotion</topic><topic>Networks</topic><topic>neural gas</topic><topic>neural network</topic><topic>Neurons</topic><topic>Software</topic><topic>Topology</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nhat-Quang Doan</creatorcontrib><creatorcontrib>Ghesmoune, Mohammed</creatorcontrib><creatorcontrib>Azzag, Hanane</creatorcontrib><creatorcontrib>Lebbah, Mustapha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nhat-Quang Doan</au><au>Ghesmoune, Mohammed</au><au>Azzag, Hanane</au><au>Lebbah, Mustapha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Growing Hierarchical Trees for Data Stream clustering and visualization</atitle><btitle>2015 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><eisbn>9781479919604</eisbn><eisbn>1479919608</eisbn><abstract>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2015.7280397</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-8 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_7280397 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering Complexity theory Construction Data points data stream Data transmission hierarchical tree Legged locomotion Networks neural gas neural network Neurons Software Topology Visualization |
title | Growing Hierarchical Trees for Data Stream clustering and visualization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Growing%20Hierarchical%20Trees%20for%20Data%20Stream%20clustering%20and%20visualization&rft.btitle=2015%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Nhat-Quang%20Doan&rft.date=2015-07-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2015.7280397&rft.eisbn=9781479919604&rft.eisbn_list=1479919608&rft_dat=%3Cproquest_6IE%3E1770322623%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770322623&rft_id=info:pmid/&rft_ieee_id=7280397&rfr_iscdi=true |