Loading…

Growing Hierarchical Trees for Data Stream clustering and visualization

Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using...

Full description

Saved in:
Bibliographic Details
Main Authors: Nhat-Quang Doan, Ghesmoune, Mohammed, Azzag, Hanane, Lebbah, Mustapha
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Nhat-Quang Doan
Ghesmoune, Mohammed
Azzag, Hanane
Lebbah, Mustapha
description Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.
doi_str_mv 10.1109/IJCNN.2015.7280397
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_7280397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7280397</ieee_id><sourcerecordid>1770322623</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963</originalsourceid><addsrcrecordid>eNo1kLFOwzAURQ0CiVL6A7BkZEl59nPieEQF0qKqDJQ5cuIXMEqTYicg-HqKWqZ7h6Mj3cvYJYcp56BvFo-z1WoqgCdTJTJArY7YRKuMS6U11ynIYzYSPOWxlKBO_jtqPGPnIbwDCNQaRyzPfffl2tdo7sgbX725yjTR2hOFqO58dGd6Ez33nswmqpoh9OT_aNPa6NOFwTTux_Suay_YaW2aQJNDjtnLw_16No-XT_lidruMnYCsj2VSo0FRlpSlhhKg1KoaStQZCIvEEyQLCIkCJS0iWiGt1cRLSRnuduGYXe-9W999DBT6YuNCRU1jWuqGUHClAIVIBe7Qqz3qiKjYercx_rs43IW_Oo5bxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770322623</pqid></control><display><type>conference_proceeding</type><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</creator><creatorcontrib>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</creatorcontrib><description>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</description><identifier>ISSN: 2161-4393</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781479919604</identifier><identifier>EISBN: 1479919608</identifier><identifier>DOI: 10.1109/IJCNN.2015.7280397</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering ; Complexity theory ; Construction ; Data points ; data stream ; Data transmission ; hierarchical tree ; Legged locomotion ; Networks ; neural gas ; neural network ; Neurons ; Software ; Topology ; Visualization</subject><ispartof>2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7280397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7280397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nhat-Quang Doan</creatorcontrib><creatorcontrib>Ghesmoune, Mohammed</creatorcontrib><creatorcontrib>Azzag, Hanane</creatorcontrib><creatorcontrib>Lebbah, Mustapha</creatorcontrib><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><title>2015 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</description><subject>Clustering</subject><subject>Complexity theory</subject><subject>Construction</subject><subject>Data points</subject><subject>data stream</subject><subject>Data transmission</subject><subject>hierarchical tree</subject><subject>Legged locomotion</subject><subject>Networks</subject><subject>neural gas</subject><subject>neural network</subject><subject>Neurons</subject><subject>Software</subject><subject>Topology</subject><subject>Visualization</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781479919604</isbn><isbn>1479919608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kLFOwzAURQ0CiVL6A7BkZEl59nPieEQF0qKqDJQ5cuIXMEqTYicg-HqKWqZ7h6Mj3cvYJYcp56BvFo-z1WoqgCdTJTJArY7YRKuMS6U11ynIYzYSPOWxlKBO_jtqPGPnIbwDCNQaRyzPfffl2tdo7sgbX725yjTR2hOFqO58dGd6Ez33nswmqpoh9OT_aNPa6NOFwTTux_Suay_YaW2aQJNDjtnLw_16No-XT_lidruMnYCsj2VSo0FRlpSlhhKg1KoaStQZCIvEEyQLCIkCJS0iWiGt1cRLSRnuduGYXe-9W999DBT6YuNCRU1jWuqGUHClAIVIBe7Qqz3qiKjYercx_rs43IW_Oo5bxQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Nhat-Quang Doan</creator><creator>Ghesmoune, Mohammed</creator><creator>Azzag, Hanane</creator><creator>Lebbah, Mustapha</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Growing Hierarchical Trees for Data Stream clustering and visualization</title><author>Nhat-Quang Doan ; Ghesmoune, Mohammed ; Azzag, Hanane ; Lebbah, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clustering</topic><topic>Complexity theory</topic><topic>Construction</topic><topic>Data points</topic><topic>data stream</topic><topic>Data transmission</topic><topic>hierarchical tree</topic><topic>Legged locomotion</topic><topic>Networks</topic><topic>neural gas</topic><topic>neural network</topic><topic>Neurons</topic><topic>Software</topic><topic>Topology</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nhat-Quang Doan</creatorcontrib><creatorcontrib>Ghesmoune, Mohammed</creatorcontrib><creatorcontrib>Azzag, Hanane</creatorcontrib><creatorcontrib>Lebbah, Mustapha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nhat-Quang Doan</au><au>Ghesmoune, Mohammed</au><au>Azzag, Hanane</au><au>Lebbah, Mustapha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Growing Hierarchical Trees for Data Stream clustering and visualization</atitle><btitle>2015 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><eisbn>9781479919604</eisbn><eisbn>1479919608</eisbn><abstract>Data stream clustering aims at studying large volumes of data that arrive continuously and the objective is to build a good clustering of the stream, using a small amount of memory and time. Visualization is still a big challenge for large data streams. In this paper we present a new approach using a hierarchical and topological structure (or network) for both clustering and visualization. The topological network is represented by a graph in which each neuron represents a set of similar data points and neighbor neurons are connected by edges. The hierarchical component consists of multiple tree-like hierarchic of clusters which allow to describe the evolution of data stream, and then analyze explicitly their similarity. This adaptive structure can be exploited by descending top-down from the topological level to any hierarchical level. The performance of the proposed algorithm is evaluated on both synthetic and real-world datasets.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2015.7280397</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_7280397
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering
Complexity theory
Construction
Data points
data stream
Data transmission
hierarchical tree
Legged locomotion
Networks
neural gas
neural network
Neurons
Software
Topology
Visualization
title Growing Hierarchical Trees for Data Stream clustering and visualization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Growing%20Hierarchical%20Trees%20for%20Data%20Stream%20clustering%20and%20visualization&rft.btitle=2015%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Nhat-Quang%20Doan&rft.date=2015-07-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2015.7280397&rft.eisbn=9781479919604&rft.eisbn_list=1479919608&rft_dat=%3Cproquest_6IE%3E1770322623%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-45f3a32bbe86ae50e6d7f0b39802d3e153ed03057074d333d24dd9e1b4e831963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770322623&rft_id=info:pmid/&rft_ieee_id=7280397&rfr_iscdi=true