Loading…

Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level

The reservoir is one of flood mitigation methods that aim to reduce the effect of flood at downstream flood prone areas. At the same time the reservoir also serves other purposes. Through modelling, how the reservoir operator made decisions in the past can be revealed. Consequently, the information...

Full description

Saved in:
Bibliographic Details
Main Authors: Mokhtar, Suriyati Abdul, Ishak, Wan Hussain Wan, Md Norwawi, Norita
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 130
container_issue
container_start_page 127
container_title
container_volume
creator Mokhtar, Suriyati Abdul
Ishak, Wan Hussain Wan
Md Norwawi, Norita
description The reservoir is one of flood mitigation methods that aim to reduce the effect of flood at downstream flood prone areas. At the same time the reservoir also serves other purposes. Through modelling, how the reservoir operator made decisions in the past can be revealed. Consequently, the information can be used to guide reservoir operator making present decision especially during emergency situations such as flood and drought. This paper discussed modelling of reservoir water release decision using Neural Network (NN) and the temporal pattern of reservoir water level. Temporal pattern is used to represent the time delay as the rainfall upstream may not directly raise the reservoir water level. The flow of water may take some time to reach the reservoir due to the location. Seven NN models have been developed and tested. The findings show that the NN model with 5-25-1 architecture demonstrate the best performance compare to the other models.
doi_str_mv 10.1109/ISMS.2014.27
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7280892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7280892</ieee_id><sourcerecordid>7280892</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-14c751ed86316f20bc453727e4efad075914e41ddc5b59c1a4cb96b5bcd2bb023</originalsourceid><addsrcrecordid>eNptjE1LAzEYhKMoKLU3b17yB7bmzebzKPWr0KrYFo8l2bwr0e1uSdaK_94WxZOnZ2aYGULOgY0AmL2czGfzEWcgRlwfkKHVBoS2tjRSy0NyykGpginNjv604idkmPMbYwyYtsaaU7KZdQGbJravtKvpM2ZM2y4m-uJ6TDvfoMtIr7GKOXYtXeZ98wE_kmt26D-79E5dG-gC15tuHz65frds_3ub4habM3Jcuybj8JcDsry9WYzvi-nj3WR8NS0ih7IvQFRaAgajSlA1Z74SstRco8DaBaalBYECQqikl7YCJypvlZe-Ctx7xssBufj5jYi42qS4dulrpblhxvLyG5GzXMM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level</title><source>IEEE Xplore All Conference Series</source><creator>Mokhtar, Suriyati Abdul ; Ishak, Wan Hussain Wan ; Md Norwawi, Norita</creator><creatorcontrib>Mokhtar, Suriyati Abdul ; Ishak, Wan Hussain Wan ; Md Norwawi, Norita</creatorcontrib><description>The reservoir is one of flood mitigation methods that aim to reduce the effect of flood at downstream flood prone areas. At the same time the reservoir also serves other purposes. Through modelling, how the reservoir operator made decisions in the past can be revealed. Consequently, the information can be used to guide reservoir operator making present decision especially during emergency situations such as flood and drought. This paper discussed modelling of reservoir water release decision using Neural Network (NN) and the temporal pattern of reservoir water level. Temporal pattern is used to represent the time delay as the rainfall upstream may not directly raise the reservoir water level. The flow of water may take some time to reach the reservoir due to the location. Seven NN models have been developed and tested. The findings show that the NN model with 5-25-1 architecture demonstrate the best performance compare to the other models.</description><identifier>ISSN: 2166-0662</identifier><identifier>EISSN: 2166-0670</identifier><identifier>EISBN: 9781479938575</identifier><identifier>EISBN: 1479938572</identifier><identifier>EISBN: 1479938580</identifier><identifier>EISBN: 9781479938582</identifier><identifier>DOI: 10.1109/ISMS.2014.27</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Floods ; Neural Network ; Reservoir Modelling ; Reservoir Water Level ; Reservoir Water Release Decision ; Reservoirs ; Temporal Data Mining ; Training</subject><ispartof>2014 5th International Conference on Intelligent Systems, Modelling and Simulation, 2014, p.127-130</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7280892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7280892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mokhtar, Suriyati Abdul</creatorcontrib><creatorcontrib>Ishak, Wan Hussain Wan</creatorcontrib><creatorcontrib>Md Norwawi, Norita</creatorcontrib><title>Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level</title><title>2014 5th International Conference on Intelligent Systems, Modelling and Simulation</title><addtitle>ISMS</addtitle><description>The reservoir is one of flood mitigation methods that aim to reduce the effect of flood at downstream flood prone areas. At the same time the reservoir also serves other purposes. Through modelling, how the reservoir operator made decisions in the past can be revealed. Consequently, the information can be used to guide reservoir operator making present decision especially during emergency situations such as flood and drought. This paper discussed modelling of reservoir water release decision using Neural Network (NN) and the temporal pattern of reservoir water level. Temporal pattern is used to represent the time delay as the rainfall upstream may not directly raise the reservoir water level. The flow of water may take some time to reach the reservoir due to the location. Seven NN models have been developed and tested. The findings show that the NN model with 5-25-1 architecture demonstrate the best performance compare to the other models.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Floods</subject><subject>Neural Network</subject><subject>Reservoir Modelling</subject><subject>Reservoir Water Level</subject><subject>Reservoir Water Release Decision</subject><subject>Reservoirs</subject><subject>Temporal Data Mining</subject><subject>Training</subject><issn>2166-0662</issn><issn>2166-0670</issn><isbn>9781479938575</isbn><isbn>1479938572</isbn><isbn>1479938580</isbn><isbn>9781479938582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNptjE1LAzEYhKMoKLU3b17yB7bmzebzKPWr0KrYFo8l2bwr0e1uSdaK_94WxZOnZ2aYGULOgY0AmL2czGfzEWcgRlwfkKHVBoS2tjRSy0NyykGpginNjv604idkmPMbYwyYtsaaU7KZdQGbJravtKvpM2ZM2y4m-uJ6TDvfoMtIr7GKOXYtXeZ98wE_kmt26D-79E5dG-gC15tuHz65frds_3ub4habM3Jcuybj8JcDsry9WYzvi-nj3WR8NS0ih7IvQFRaAgajSlA1Z74SstRco8DaBaalBYECQqikl7YCJypvlZe-Ctx7xssBufj5jYi42qS4dulrpblhxvLyG5GzXMM</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mokhtar, Suriyati Abdul</creator><creator>Ishak, Wan Hussain Wan</creator><creator>Md Norwawi, Norita</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20140101</creationdate><title>Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level</title><author>Mokhtar, Suriyati Abdul ; Ishak, Wan Hussain Wan ; Md Norwawi, Norita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-14c751ed86316f20bc453727e4efad075914e41ddc5b59c1a4cb96b5bcd2bb023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Floods</topic><topic>Neural Network</topic><topic>Reservoir Modelling</topic><topic>Reservoir Water Level</topic><topic>Reservoir Water Release Decision</topic><topic>Reservoirs</topic><topic>Temporal Data Mining</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Mokhtar, Suriyati Abdul</creatorcontrib><creatorcontrib>Ishak, Wan Hussain Wan</creatorcontrib><creatorcontrib>Md Norwawi, Norita</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mokhtar, Suriyati Abdul</au><au>Ishak, Wan Hussain Wan</au><au>Md Norwawi, Norita</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level</atitle><btitle>2014 5th International Conference on Intelligent Systems, Modelling and Simulation</btitle><stitle>ISMS</stitle><date>2014-01-01</date><risdate>2014</risdate><spage>127</spage><epage>130</epage><pages>127-130</pages><issn>2166-0662</issn><eissn>2166-0670</eissn><eisbn>9781479938575</eisbn><eisbn>1479938572</eisbn><eisbn>1479938580</eisbn><eisbn>9781479938582</eisbn><coden>IEEPAD</coden><abstract>The reservoir is one of flood mitigation methods that aim to reduce the effect of flood at downstream flood prone areas. At the same time the reservoir also serves other purposes. Through modelling, how the reservoir operator made decisions in the past can be revealed. Consequently, the information can be used to guide reservoir operator making present decision especially during emergency situations such as flood and drought. This paper discussed modelling of reservoir water release decision using Neural Network (NN) and the temporal pattern of reservoir water level. Temporal pattern is used to represent the time delay as the rainfall upstream may not directly raise the reservoir water level. The flow of water may take some time to reach the reservoir due to the location. Seven NN models have been developed and tested. The findings show that the NN model with 5-25-1 architecture demonstrate the best performance compare to the other models.</abstract><pub>IEEE</pub><doi>10.1109/ISMS.2014.27</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-0662
ispartof 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, 2014, p.127-130
issn 2166-0662
2166-0670
language eng
recordid cdi_ieee_primary_7280892
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Computational modeling
Floods
Neural Network
Reservoir Modelling
Reservoir Water Level
Reservoir Water Release Decision
Reservoirs
Temporal Data Mining
Training
title Modelling of Reservoir Water Release Decision Using Neural Network and Temporal Pattern of Reservoir Water Level
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20of%20Reservoir%20Water%20Release%20Decision%20Using%20Neural%20Network%20and%20Temporal%20Pattern%20of%20Reservoir%20Water%20Level&rft.btitle=2014%205th%20International%20Conference%20on%20Intelligent%20Systems,%20Modelling%20and%20Simulation&rft.au=Mokhtar,%20Suriyati%20Abdul&rft.date=2014-01-01&rft.spage=127&rft.epage=130&rft.pages=127-130&rft.issn=2166-0662&rft.eissn=2166-0670&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISMS.2014.27&rft.eisbn=9781479938575&rft.eisbn_list=1479938572&rft.eisbn_list=1479938580&rft.eisbn_list=9781479938582&rft_dat=%3Cieee_CHZPO%3E7280892%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i213t-14c751ed86316f20bc453727e4efad075914e41ddc5b59c1a4cb96b5bcd2bb023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7280892&rfr_iscdi=true