Loading…

Facial recognition employing Transform Domain Mutual Principal Component Analysis

A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated....

Full description

Saved in:
Bibliographic Details
Main Authors: Chehata, Ramy C. G., Mikhael, Wasfy B., Atia, George
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Chehata, Ramy C. G.
Mikhael, Wasfy B.
Atia, George
description A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.
doi_str_mv 10.1109/MWSCAS.2015.7282177
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7282177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7282177</ieee_id><sourcerecordid>7282177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03</originalsourceid><addsrcrecordid>eNotkNFOgzAYhavRxDn3BLvhBcD-LeUvlwSdmmxRsxkvl1LapQZaAuyCtxfjrr7v4uQk5xCyBpoA0Pxx970vi33CKIgEmWSAeEVWOUpIM-SZEBKuyQJmxlzm-c2fp7Njmt2R-2H4oZRxhHxBPjdKO9VEvdHh5N3ogo9M2zVhcv4UHXrlBxv6NnoKrXI-2p3H85z-6J3XrputDG0XvPFjVHjVTIMbHsitVc1gVhcuydfm-VC-xtv3l7ey2MaOUTnGqGXNZaY5rySnqcBc8NpyJhFFWlkUVlZM23mZlGmdVQaUMBw4ZKBrtJQvyfq_1xljjl3vWtVPx8sb_BcZnlJa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</creator><creatorcontrib>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</creatorcontrib><description>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</description><identifier>ISSN: 1548-3746</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 9781467365581</identifier><identifier>EISBN: 1467365580</identifier><identifier>DOI: 10.1109/MWSCAS.2015.7282177</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Covariance matrices ; Face ; Face recognition ; Noise ; Principal component analysis ; Testing</subject><ispartof>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7282177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7282177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chehata, Ramy C. G.</creatorcontrib><creatorcontrib>Mikhael, Wasfy B.</creatorcontrib><creatorcontrib>Atia, George</creatorcontrib><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><title>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)</title><addtitle>MWSCAS</addtitle><description>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</description><subject>Accuracy</subject><subject>Covariance matrices</subject><subject>Face</subject><subject>Face recognition</subject><subject>Noise</subject><subject>Principal component analysis</subject><subject>Testing</subject><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781467365581</isbn><isbn>1467365580</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFOgzAYhavRxDn3BLvhBcD-LeUvlwSdmmxRsxkvl1LapQZaAuyCtxfjrr7v4uQk5xCyBpoA0Pxx970vi33CKIgEmWSAeEVWOUpIM-SZEBKuyQJmxlzm-c2fp7Njmt2R-2H4oZRxhHxBPjdKO9VEvdHh5N3ogo9M2zVhcv4UHXrlBxv6NnoKrXI-2p3H85z-6J3XrputDG0XvPFjVHjVTIMbHsitVc1gVhcuydfm-VC-xtv3l7ey2MaOUTnGqGXNZaY5rySnqcBc8NpyJhFFWlkUVlZM23mZlGmdVQaUMBw4ZKBrtJQvyfq_1xljjl3vWtVPx8sb_BcZnlJa</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Chehata, Ramy C. G.</creator><creator>Mikhael, Wasfy B.</creator><creator>Atia, George</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150801</creationdate><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><author>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Covariance matrices</topic><topic>Face</topic><topic>Face recognition</topic><topic>Noise</topic><topic>Principal component analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chehata, Ramy C. G.</creatorcontrib><creatorcontrib>Mikhael, Wasfy B.</creatorcontrib><creatorcontrib>Atia, George</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chehata, Ramy C. G.</au><au>Mikhael, Wasfy B.</au><au>Atia, George</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Facial recognition employing Transform Domain Mutual Principal Component Analysis</atitle><btitle>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)</btitle><stitle>MWSCAS</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><eisbn>9781467365581</eisbn><eisbn>1467365580</eisbn><abstract>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2015.7282177</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-3746
ispartof 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, p.1-4
issn 1548-3746
1558-3899
language eng
recordid cdi_ieee_primary_7282177
source IEEE Xplore All Conference Series
subjects Accuracy
Covariance matrices
Face
Face recognition
Noise
Principal component analysis
Testing
title Facial recognition employing Transform Domain Mutual Principal Component Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Facial%20recognition%20employing%20Transform%20Domain%20Mutual%20Principal%20Component%20Analysis&rft.btitle=2015%20IEEE%2058th%20International%20Midwest%20Symposium%20on%20Circuits%20and%20Systems%20(MWSCAS)&rft.au=Chehata,%20Ramy%20C.%20G.&rft.date=2015-08-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1548-3746&rft.eissn=1558-3899&rft_id=info:doi/10.1109/MWSCAS.2015.7282177&rft.eisbn=9781467365581&rft.eisbn_list=1467365580&rft_dat=%3Cieee_CHZPO%3E7282177%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7282177&rfr_iscdi=true