Loading…
Facial recognition employing Transform Domain Mutual Principal Component Analysis
A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated....
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chehata, Ramy C. G. Mikhael, Wasfy B. Atia, George |
description | A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements. |
doi_str_mv | 10.1109/MWSCAS.2015.7282177 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7282177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7282177</ieee_id><sourcerecordid>7282177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03</originalsourceid><addsrcrecordid>eNotkNFOgzAYhavRxDn3BLvhBcD-LeUvlwSdmmxRsxkvl1LapQZaAuyCtxfjrr7v4uQk5xCyBpoA0Pxx970vi33CKIgEmWSAeEVWOUpIM-SZEBKuyQJmxlzm-c2fp7Njmt2R-2H4oZRxhHxBPjdKO9VEvdHh5N3ogo9M2zVhcv4UHXrlBxv6NnoKrXI-2p3H85z-6J3XrputDG0XvPFjVHjVTIMbHsitVc1gVhcuydfm-VC-xtv3l7ey2MaOUTnGqGXNZaY5rySnqcBc8NpyJhFFWlkUVlZM23mZlGmdVQaUMBw4ZKBrtJQvyfq_1xljjl3vWtVPx8sb_BcZnlJa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</creator><creatorcontrib>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</creatorcontrib><description>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</description><identifier>ISSN: 1548-3746</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 9781467365581</identifier><identifier>EISBN: 1467365580</identifier><identifier>DOI: 10.1109/MWSCAS.2015.7282177</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Covariance matrices ; Face ; Face recognition ; Noise ; Principal component analysis ; Testing</subject><ispartof>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7282177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7282177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chehata, Ramy C. G.</creatorcontrib><creatorcontrib>Mikhael, Wasfy B.</creatorcontrib><creatorcontrib>Atia, George</creatorcontrib><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><title>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)</title><addtitle>MWSCAS</addtitle><description>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</description><subject>Accuracy</subject><subject>Covariance matrices</subject><subject>Face</subject><subject>Face recognition</subject><subject>Noise</subject><subject>Principal component analysis</subject><subject>Testing</subject><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781467365581</isbn><isbn>1467365580</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFOgzAYhavRxDn3BLvhBcD-LeUvlwSdmmxRsxkvl1LapQZaAuyCtxfjrr7v4uQk5xCyBpoA0Pxx970vi33CKIgEmWSAeEVWOUpIM-SZEBKuyQJmxlzm-c2fp7Njmt2R-2H4oZRxhHxBPjdKO9VEvdHh5N3ogo9M2zVhcv4UHXrlBxv6NnoKrXI-2p3H85z-6J3XrputDG0XvPFjVHjVTIMbHsitVc1gVhcuydfm-VC-xtv3l7ey2MaOUTnGqGXNZaY5rySnqcBc8NpyJhFFWlkUVlZM23mZlGmdVQaUMBw4ZKBrtJQvyfq_1xljjl3vWtVPx8sb_BcZnlJa</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Chehata, Ramy C. G.</creator><creator>Mikhael, Wasfy B.</creator><creator>Atia, George</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150801</creationdate><title>Facial recognition employing Transform Domain Mutual Principal Component Analysis</title><author>Chehata, Ramy C. G. ; Mikhael, Wasfy B. ; Atia, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Covariance matrices</topic><topic>Face</topic><topic>Face recognition</topic><topic>Noise</topic><topic>Principal component analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chehata, Ramy C. G.</creatorcontrib><creatorcontrib>Mikhael, Wasfy B.</creatorcontrib><creatorcontrib>Atia, George</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chehata, Ramy C. G.</au><au>Mikhael, Wasfy B.</au><au>Atia, George</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Facial recognition employing Transform Domain Mutual Principal Component Analysis</atitle><btitle>2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)</btitle><stitle>MWSCAS</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><eisbn>9781467365581</eisbn><eisbn>1467365580</eisbn><abstract>A face recognition algorithm based on a newly developed Transform Domain Mutual Principal Component Analysis (TD-2D-MuPCA) approach is proposed. In this approach, the spatial facial two-dimensional images (2D) and their division into horizontal, vertical and diagonal sub-images halves are generated. The sub-image halves are processed using non-overlapping and overlapping windows. Each face and its processed sub-images are subsequently transformed using a compressing transform such as the two dimensional discrete cosine transform. This produces the TD-2D-MuPCA. The performance of this approach for facial image recognition is compared with the state of the art successful techniques. The test results, for noise free and noisy images, yield recognition accuracy of 97% or higher. The improved recognition accuracy is achieved while retaining notable savings in storage and computational requirements.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2015.7282177</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-3746 |
ispartof | 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, p.1-4 |
issn | 1548-3746 1558-3899 |
language | eng |
recordid | cdi_ieee_primary_7282177 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Covariance matrices Face Face recognition Noise Principal component analysis Testing |
title | Facial recognition employing Transform Domain Mutual Principal Component Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Facial%20recognition%20employing%20Transform%20Domain%20Mutual%20Principal%20Component%20Analysis&rft.btitle=2015%20IEEE%2058th%20International%20Midwest%20Symposium%20on%20Circuits%20and%20Systems%20(MWSCAS)&rft.au=Chehata,%20Ramy%20C.%20G.&rft.date=2015-08-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1548-3746&rft.eissn=1558-3899&rft_id=info:doi/10.1109/MWSCAS.2015.7282177&rft.eisbn=9781467365581&rft.eisbn_list=1467365580&rft_dat=%3Cieee_CHZPO%3E7282177%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-7c8d386c33b830457953df3287754bf75f8b2cf177884d6be1a5e313161cd7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7282177&rfr_iscdi=true |