Loading…
Linear complexity for multidimensional arrays - a numerical invariant
Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2701 |
container_issue | |
container_start_page | 2697 |
container_title | |
container_volume | |
creator | Gomez-Perez, Domingo Hoholdt, Tom Moreno, Oscar Rubio, Ivelisse |
description | Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process introduced in the patent titled "Digital Watermarking" produces arrays with good asymptotic properties. |
doi_str_mv | 10.1109/ISIT.2015.7282946 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7282946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7282946</ieee_id><sourcerecordid>1770366590</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-b202ef6ef635b8dd134869dd20313b35aea0af92af8011c2e19bb620c25a38573</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXEXBWvsA4mWPXhL3283-HaVULRQ8WM_hS7KBlWRTdxOxb2-gFQZmGIaBGULugeUAzD5tP7b7nDOQueaG20JdkJXVBgqlhdasgEuy4CB1ZgD01b9mVt6Q25S-GBNaML4gm50PDiOth_7QuV8_Hmk7RNpP3egb37uQ_BCwoxgjHhPNKNIw9S76ejZ9-MHoMYx35LrFLrnVmZfk82WzX79lu_fX7fp5l3ngYswqzrhr1QwhK9M0IAqjbNNwJkBUQqJDhq3l2BoGUHMHtqoUZzWXKIzUYkkeT72HOHxPLo1l71Ptug6DG6ZUwjxdKCUtm6MPp6h3zpWH6HuMx_J8lvgDgEBbZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770366590</pqid></control><display><type>conference_proceeding</type><title>Linear complexity for multidimensional arrays - a numerical invariant</title><source>IEEE Xplore All Conference Series</source><creator>Gomez-Perez, Domingo ; Hoholdt, Tom ; Moreno, Oscar ; Rubio, Ivelisse</creator><creatorcontrib>Gomez-Perez, Domingo ; Hoholdt, Tom ; Moreno, Oscar ; Rubio, Ivelisse</creatorcontrib><description>Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process introduced in the patent titled "Digital Watermarking" produces arrays with good asymptotic properties.</description><identifier>ISSN: 2157-8095</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781467377041</identifier><identifier>EISBN: 146737704X</identifier><identifier>DOI: 10.1109/ISIT.2015.7282946</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Asymptotic properties ; Complexity ; Complexity theory ; Correlation ; Digital watermarking ; Dimensional measurements ; Groebner bases ; Information theory ; invariance ; Invariants ; Lead ; linear complexity ; Polynomials ; Three-dimensional displays ; Watermarking</subject><ispartof>2015 IEEE International Symposium on Information Theory (ISIT), 2015, p.2697-2701</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7282946$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7282946$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gomez-Perez, Domingo</creatorcontrib><creatorcontrib>Hoholdt, Tom</creatorcontrib><creatorcontrib>Moreno, Oscar</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><title>Linear complexity for multidimensional arrays - a numerical invariant</title><title>2015 IEEE International Symposium on Information Theory (ISIT)</title><addtitle>ISIT</addtitle><description>Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process introduced in the patent titled "Digital Watermarking" produces arrays with good asymptotic properties.</description><subject>Arrays</subject><subject>Asymptotic properties</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Correlation</subject><subject>Digital watermarking</subject><subject>Dimensional measurements</subject><subject>Groebner bases</subject><subject>Information theory</subject><subject>invariance</subject><subject>Invariants</subject><subject>Lead</subject><subject>linear complexity</subject><subject>Polynomials</subject><subject>Three-dimensional displays</subject><subject>Watermarking</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781467377041</isbn><isbn>146737704X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1Kw0AYXEXBWvsA4mWPXhL3283-HaVULRQ8WM_hS7KBlWRTdxOxb2-gFQZmGIaBGULugeUAzD5tP7b7nDOQueaG20JdkJXVBgqlhdasgEuy4CB1ZgD01b9mVt6Q25S-GBNaML4gm50PDiOth_7QuV8_Hmk7RNpP3egb37uQ_BCwoxgjHhPNKNIw9S76ejZ9-MHoMYx35LrFLrnVmZfk82WzX79lu_fX7fp5l3ngYswqzrhr1QwhK9M0IAqjbNNwJkBUQqJDhq3l2BoGUHMHtqoUZzWXKIzUYkkeT72HOHxPLo1l71Ptug6DG6ZUwjxdKCUtm6MPp6h3zpWH6HuMx_J8lvgDgEBbZQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gomez-Perez, Domingo</creator><creator>Hoholdt, Tom</creator><creator>Moreno, Oscar</creator><creator>Rubio, Ivelisse</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Linear complexity for multidimensional arrays - a numerical invariant</title><author>Gomez-Perez, Domingo ; Hoholdt, Tom ; Moreno, Oscar ; Rubio, Ivelisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-b202ef6ef635b8dd134869dd20313b35aea0af92af8011c2e19bb620c25a38573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Asymptotic properties</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Correlation</topic><topic>Digital watermarking</topic><topic>Dimensional measurements</topic><topic>Groebner bases</topic><topic>Information theory</topic><topic>invariance</topic><topic>Invariants</topic><topic>Lead</topic><topic>linear complexity</topic><topic>Polynomials</topic><topic>Three-dimensional displays</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Perez, Domingo</creatorcontrib><creatorcontrib>Hoholdt, Tom</creatorcontrib><creatorcontrib>Moreno, Oscar</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Perez, Domingo</au><au>Hoholdt, Tom</au><au>Moreno, Oscar</au><au>Rubio, Ivelisse</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linear complexity for multidimensional arrays - a numerical invariant</atitle><btitle>2015 IEEE International Symposium on Information Theory (ISIT)</btitle><stitle>ISIT</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>2697</spage><epage>2701</epage><pages>2697-2701</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><eisbn>9781467377041</eisbn><eisbn>146737704X</eisbn><abstract>Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process introduced in the patent titled "Digital Watermarking" produces arrays with good asymptotic properties.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2015.7282946</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2015 IEEE International Symposium on Information Theory (ISIT), 2015, p.2697-2701 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_7282946 |
source | IEEE Xplore All Conference Series |
subjects | Arrays Asymptotic properties Complexity Complexity theory Correlation Digital watermarking Dimensional measurements Groebner bases Information theory invariance Invariants Lead linear complexity Polynomials Three-dimensional displays Watermarking |
title | Linear complexity for multidimensional arrays - a numerical invariant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linear%20complexity%20for%20multidimensional%20arrays%20-%20a%20numerical%20invariant&rft.btitle=2015%20IEEE%20International%20Symposium%20on%20Information%20Theory%20(ISIT)&rft.au=Gomez-Perez,%20Domingo&rft.date=2015-06-01&rft.spage=2697&rft.epage=2701&rft.pages=2697-2701&rft.issn=2157-8095&rft.eissn=2157-8117&rft_id=info:doi/10.1109/ISIT.2015.7282946&rft.eisbn=9781467377041&rft.eisbn_list=146737704X&rft_dat=%3Cproquest_CHZPO%3E1770366590%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-b202ef6ef635b8dd134869dd20313b35aea0af92af8011c2e19bb620c25a38573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770366590&rft_id=info:pmid/&rft_ieee_id=7282946&rfr_iscdi=true |