Loading…

A human expert-based approach to electrical peak demand management

The objective of this paper is to propose a human expert-based approach to electrical peak demand management. The proposed approach helps to allocate demand curtailments (MW) among distribution substations (DS) or feeders in an electric utility service area based on requirements of the central load...

Full description

Saved in:
Bibliographic Details
Main Authors: Bian, Desong, Pipattanasomporn, Manisa, Rahman, Saifur
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Bian, Desong
Pipattanasomporn, Manisa
Rahman, Saifur
description The objective of this paper is to propose a human expert-based approach to electrical peak demand management. The proposed approach helps to allocate demand curtailments (MW) among distribution substations (DS) or feeders in an electric utility service area based on requirements of the central load dispatch center. Demand curtailment allocation is quantified by taking into account demand response (DR) potential and load curtailment priority of each DS, which can be determined using DS loading level, capacity of each DS, customer types (residential/commercial), and load categories (deployable, interruptible, or critical). The analytic hierarchy process is used to model a complex decision-making process according to both expert inputs and objective parameters. Simulation case studies are conducted to demonstrate how the proposed approach can be implemented to perform DR using real-world data from an electric utility. Simulation results demonstrate that the proposed approach is capable of achieving realistic demand curtailment allocations among different DSs to meet the peak load reduction requirements at the utility level.
doi_str_mv 10.1109/PESGM.2015.7286112
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7286112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7286112</ieee_id><sourcerecordid>7286112</sourcerecordid><originalsourceid>FETCH-LOGICAL-i138t-5a975ea630ccac723553469125acecbf17c4524ee4f15fca1f21bd8e5ef4382f3</originalsourceid><addsrcrecordid>eNotj9FKwzAUhiMoOOdeQG_yAq05SU6TXM4xpzBRUK_HaXriqu1W2gr69hu4m_-7-fjgF-IGVA6gwt3r8m31nGsFmDvtCwB9JmbBebCFM15ZFc7FBILRGSK4S3E1DF9KoQGrJ-J-Lrc_Le0k_3bcj1lJA1eSuq7fU9zKcS-54Tj2daRGdkzfsuKjXsnj0Ce3vBuvxUWiZuDZiVPx8bB8Xzxm65fV02K-zmowfsyQgkOmwqgYKTptEI0tAmikyLFM4KJFbZltAkyRIGkoK8_IyRqvk5mK2_9uzcybrq9b6v82p8vmAMsvStg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A human expert-based approach to electrical peak demand management</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bian, Desong ; Pipattanasomporn, Manisa ; Rahman, Saifur</creator><creatorcontrib>Bian, Desong ; Pipattanasomporn, Manisa ; Rahman, Saifur</creatorcontrib><description>The objective of this paper is to propose a human expert-based approach to electrical peak demand management. The proposed approach helps to allocate demand curtailments (MW) among distribution substations (DS) or feeders in an electric utility service area based on requirements of the central load dispatch center. Demand curtailment allocation is quantified by taking into account demand response (DR) potential and load curtailment priority of each DS, which can be determined using DS loading level, capacity of each DS, customer types (residential/commercial), and load categories (deployable, interruptible, or critical). The analytic hierarchy process is used to model a complex decision-making process according to both expert inputs and objective parameters. Simulation case studies are conducted to demonstrate how the proposed approach can be implemented to perform DR using real-world data from an electric utility. Simulation results demonstrate that the proposed approach is capable of achieving realistic demand curtailment allocations among different DSs to meet the peak load reduction requirements at the utility level.</description><identifier>ISSN: 1932-5517</identifier><identifier>EISBN: 9781467380409</identifier><identifier>EISBN: 1467380407</identifier><identifier>DOI: 10.1109/PESGM.2015.7286112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electric potential ; Load management ; Load modeling ; Loading ; Power industry ; Resource management ; Substations</subject><ispartof>2015 IEEE Power &amp; Energy Society General Meeting, 2015, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7286112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7286112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bian, Desong</creatorcontrib><creatorcontrib>Pipattanasomporn, Manisa</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><title>A human expert-based approach to electrical peak demand management</title><title>2015 IEEE Power &amp; Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>The objective of this paper is to propose a human expert-based approach to electrical peak demand management. The proposed approach helps to allocate demand curtailments (MW) among distribution substations (DS) or feeders in an electric utility service area based on requirements of the central load dispatch center. Demand curtailment allocation is quantified by taking into account demand response (DR) potential and load curtailment priority of each DS, which can be determined using DS loading level, capacity of each DS, customer types (residential/commercial), and load categories (deployable, interruptible, or critical). The analytic hierarchy process is used to model a complex decision-making process according to both expert inputs and objective parameters. Simulation case studies are conducted to demonstrate how the proposed approach can be implemented to perform DR using real-world data from an electric utility. Simulation results demonstrate that the proposed approach is capable of achieving realistic demand curtailment allocations among different DSs to meet the peak load reduction requirements at the utility level.</description><subject>Electric potential</subject><subject>Load management</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Power industry</subject><subject>Resource management</subject><subject>Substations</subject><issn>1932-5517</issn><isbn>9781467380409</isbn><isbn>1467380407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhiMoOOdeQG_yAq05SU6TXM4xpzBRUK_HaXriqu1W2gr69hu4m_-7-fjgF-IGVA6gwt3r8m31nGsFmDvtCwB9JmbBebCFM15ZFc7FBILRGSK4S3E1DF9KoQGrJ-J-Lrc_Le0k_3bcj1lJA1eSuq7fU9zKcS-54Tj2daRGdkzfsuKjXsnj0Ce3vBuvxUWiZuDZiVPx8bB8Xzxm65fV02K-zmowfsyQgkOmwqgYKTptEI0tAmikyLFM4KJFbZltAkyRIGkoK8_IyRqvk5mK2_9uzcybrq9b6v82p8vmAMsvStg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Bian, Desong</creator><creator>Pipattanasomporn, Manisa</creator><creator>Rahman, Saifur</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150701</creationdate><title>A human expert-based approach to electrical peak demand management</title><author>Bian, Desong ; Pipattanasomporn, Manisa ; Rahman, Saifur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i138t-5a975ea630ccac723553469125acecbf17c4524ee4f15fca1f21bd8e5ef4382f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electric potential</topic><topic>Load management</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Power industry</topic><topic>Resource management</topic><topic>Substations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bian, Desong</creatorcontrib><creatorcontrib>Pipattanasomporn, Manisa</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bian, Desong</au><au>Pipattanasomporn, Manisa</au><au>Rahman, Saifur</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A human expert-based approach to electrical peak demand management</atitle><btitle>2015 IEEE Power &amp; Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1932-5517</issn><eisbn>9781467380409</eisbn><eisbn>1467380407</eisbn><abstract>The objective of this paper is to propose a human expert-based approach to electrical peak demand management. The proposed approach helps to allocate demand curtailments (MW) among distribution substations (DS) or feeders in an electric utility service area based on requirements of the central load dispatch center. Demand curtailment allocation is quantified by taking into account demand response (DR) potential and load curtailment priority of each DS, which can be determined using DS loading level, capacity of each DS, customer types (residential/commercial), and load categories (deployable, interruptible, or critical). The analytic hierarchy process is used to model a complex decision-making process according to both expert inputs and objective parameters. Simulation case studies are conducted to demonstrate how the proposed approach can be implemented to perform DR using real-world data from an electric utility. Simulation results demonstrate that the proposed approach is capable of achieving realistic demand curtailment allocations among different DSs to meet the peak load reduction requirements at the utility level.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2015.7286112</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-5517
ispartof 2015 IEEE Power & Energy Society General Meeting, 2015, p.1-1
issn 1932-5517
language eng
recordid cdi_ieee_primary_7286112
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electric potential
Load management
Load modeling
Loading
Power industry
Resource management
Substations
title A human expert-based approach to electrical peak demand management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20human%20expert-based%20approach%20to%20electrical%20peak%20demand%20management&rft.btitle=2015%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting&rft.au=Bian,%20Desong&rft.date=2015-07-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1932-5517&rft_id=info:doi/10.1109/PESGM.2015.7286112&rft.eisbn=9781467380409&rft.eisbn_list=1467380407&rft_dat=%3Cieee_6IE%3E7286112%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i138t-5a975ea630ccac723553469125acecbf17c4524ee4f15fca1f21bd8e5ef4382f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7286112&rfr_iscdi=true