Loading…
Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate
In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remo...
Saved in:
Published in: | IEEE transactions on wireless communications 2016-02, Vol.15 (2), p.1174-1185 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193 |
container_end_page | 1185 |
container_issue | 2 |
container_start_page | 1174 |
container_title | IEEE transactions on wireless communications |
container_volume | 15 |
creator | Zhijin Qin Yue Gao Parini, Clive G. |
description | In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS. |
doi_str_mv | 10.1109/TWC.2015.2485992 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7287796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7287796</ieee_id><sourcerecordid>4047519021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhYMoWKt7wc2AGzep88jMZJYlPqEo9IHLYZrclJS8OpOo_fdObHHh6p7L-c6Fe4LgmuAJIVjdLz-SCcWET2gUc6XoSTAinMch9fvpoJkICZXiPLhwbosxkYLzUQAPpjPh1LnCdZChWfOFkqZqS_guuv2vtODNT0CLFtLO9hVaQO2KeoOaGs3BlOGyqLxbbGpTOrSqM7Bo0a_Dt_2u90fR3HRwGZzl3oWr4xwHq6fHZfISzt6fX5PpLEyZEF2YYcmEUUbmkDMeYy4lg0hmPI7yNcWx4CCxYIpEVFCWp5zk69QIzlQmSUwUGwd3h7utbXY9uE5XhUuhLE0NTe-0hwSOMFEDevsP3Ta9HX7QRMaSUsko9hQ-UKltnLOQ69YWlbF7TbAeete-dz30ro-9-8jNIVIAwB8uaSylEuwHYEV9Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787227320</pqid></control><display><type>article</type><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhijin Qin ; Yue Gao ; Parini, Clive G.</creator><creatorcontrib>Zhijin Qin ; Yue Gao ; Parini, Clive G.</creatorcontrib><description>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2485992</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity ; Compressive spectrum sensing ; Computer simulation ; Detection ; geo-location database ; Minimization ; Random variables ; Real time ; Sampling ; Sensors ; TV white space ; Wideband ; wideband spectrum sensing ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2016-02, Vol.15 (2), p.1174-1185</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</citedby><cites>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7287796$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Parini, Clive G.</creatorcontrib><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Compressive spectrum sensing</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>geo-location database</subject><subject>Minimization</subject><subject>Random variables</subject><subject>Real time</subject><subject>Sampling</subject><subject>Sensors</subject><subject>TV white space</subject><subject>Wideband</subject><subject>wideband spectrum sensing</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEtLw0AUhYMoWKt7wc2AGzep88jMZJYlPqEo9IHLYZrclJS8OpOo_fdObHHh6p7L-c6Fe4LgmuAJIVjdLz-SCcWET2gUc6XoSTAinMch9fvpoJkICZXiPLhwbosxkYLzUQAPpjPh1LnCdZChWfOFkqZqS_guuv2vtODNT0CLFtLO9hVaQO2KeoOaGs3BlOGyqLxbbGpTOrSqM7Bo0a_Dt_2u90fR3HRwGZzl3oWr4xwHq6fHZfISzt6fX5PpLEyZEF2YYcmEUUbmkDMeYy4lg0hmPI7yNcWx4CCxYIpEVFCWp5zk69QIzlQmSUwUGwd3h7utbXY9uE5XhUuhLE0NTe-0hwSOMFEDevsP3Ta9HX7QRMaSUsko9hQ-UKltnLOQ69YWlbF7TbAeete-dz30ro-9-8jNIVIAwB8uaSylEuwHYEV9Iw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Zhijin Qin</creator><creator>Yue Gao</creator><creator>Parini, Clive G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201602</creationdate><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><author>Zhijin Qin ; Yue Gao ; Parini, Clive G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Compressive spectrum sensing</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>geo-location database</topic><topic>Minimization</topic><topic>Random variables</topic><topic>Real time</topic><topic>Sampling</topic><topic>Sensors</topic><topic>TV white space</topic><topic>Wideband</topic><topic>wideband spectrum sensing</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Parini, Clive G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhijin Qin</au><au>Yue Gao</au><au>Parini, Clive G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-02</date><risdate>2016</risdate><volume>15</volume><issue>2</issue><spage>1174</spage><epage>1185</epage><pages>1174-1185</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2485992</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2016-02, Vol.15 (2), p.1174-1185 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_7287796 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Complexity Compressive spectrum sensing Computer simulation Detection geo-location database Minimization Random variables Real time Sampling Sensors TV white space Wideband wideband spectrum sensing Wireless communication Wireless sensor networks |
title | Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Assisted%20Low%20Complexity%20Compressive%20Spectrum%20Sensing%20on%20Real-Time%20Signals%20Under%20Sub-Nyquist%20Rate&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhijin%20Qin&rft.date=2016-02&rft.volume=15&rft.issue=2&rft.spage=1174&rft.epage=1185&rft.pages=1174-1185&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2485992&rft_dat=%3Cproquest_ieee_%3E4047519021%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787227320&rft_id=info:pmid/&rft_ieee_id=7287796&rfr_iscdi=true |