Loading…

Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate

In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2016-02, Vol.15 (2), p.1174-1185
Main Authors: Zhijin Qin, Yue Gao, Parini, Clive G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193
cites cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193
container_end_page 1185
container_issue 2
container_start_page 1174
container_title IEEE transactions on wireless communications
container_volume 15
creator Zhijin Qin
Yue Gao
Parini, Clive G.
description In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.
doi_str_mv 10.1109/TWC.2015.2485992
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7287796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7287796</ieee_id><sourcerecordid>4047519021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhYMoWKt7wc2AGzep88jMZJYlPqEo9IHLYZrclJS8OpOo_fdObHHh6p7L-c6Fe4LgmuAJIVjdLz-SCcWET2gUc6XoSTAinMch9fvpoJkICZXiPLhwbosxkYLzUQAPpjPh1LnCdZChWfOFkqZqS_guuv2vtODNT0CLFtLO9hVaQO2KeoOaGs3BlOGyqLxbbGpTOrSqM7Bo0a_Dt_2u90fR3HRwGZzl3oWr4xwHq6fHZfISzt6fX5PpLEyZEF2YYcmEUUbmkDMeYy4lg0hmPI7yNcWx4CCxYIpEVFCWp5zk69QIzlQmSUwUGwd3h7utbXY9uE5XhUuhLE0NTe-0hwSOMFEDevsP3Ta9HX7QRMaSUsko9hQ-UKltnLOQ69YWlbF7TbAeete-dz30ro-9-8jNIVIAwB8uaSylEuwHYEV9Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787227320</pqid></control><display><type>article</type><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhijin Qin ; Yue Gao ; Parini, Clive G.</creator><creatorcontrib>Zhijin Qin ; Yue Gao ; Parini, Clive G.</creatorcontrib><description>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2485992</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity ; Compressive spectrum sensing ; Computer simulation ; Detection ; geo-location database ; Minimization ; Random variables ; Real time ; Sampling ; Sensors ; TV white space ; Wideband ; wideband spectrum sensing ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2016-02, Vol.15 (2), p.1174-1185</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</citedby><cites>FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7287796$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Parini, Clive G.</creatorcontrib><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Compressive spectrum sensing</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>geo-location database</subject><subject>Minimization</subject><subject>Random variables</subject><subject>Real time</subject><subject>Sampling</subject><subject>Sensors</subject><subject>TV white space</subject><subject>Wideband</subject><subject>wideband spectrum sensing</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEtLw0AUhYMoWKt7wc2AGzep88jMZJYlPqEo9IHLYZrclJS8OpOo_fdObHHh6p7L-c6Fe4LgmuAJIVjdLz-SCcWET2gUc6XoSTAinMch9fvpoJkICZXiPLhwbosxkYLzUQAPpjPh1LnCdZChWfOFkqZqS_guuv2vtODNT0CLFtLO9hVaQO2KeoOaGs3BlOGyqLxbbGpTOrSqM7Bo0a_Dt_2u90fR3HRwGZzl3oWr4xwHq6fHZfISzt6fX5PpLEyZEF2YYcmEUUbmkDMeYy4lg0hmPI7yNcWx4CCxYIpEVFCWp5zk69QIzlQmSUwUGwd3h7utbXY9uE5XhUuhLE0NTe-0hwSOMFEDevsP3Ta9HX7QRMaSUsko9hQ-UKltnLOQ69YWlbF7TbAeete-dz30ro-9-8jNIVIAwB8uaSylEuwHYEV9Iw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Zhijin Qin</creator><creator>Yue Gao</creator><creator>Parini, Clive G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201602</creationdate><title>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</title><author>Zhijin Qin ; Yue Gao ; Parini, Clive G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Compressive spectrum sensing</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>geo-location database</topic><topic>Minimization</topic><topic>Random variables</topic><topic>Real time</topic><topic>Sampling</topic><topic>Sensors</topic><topic>TV white space</topic><topic>Wideband</topic><topic>wideband spectrum sensing</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Parini, Clive G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhijin Qin</au><au>Yue Gao</au><au>Parini, Clive G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-02</date><risdate>2016</risdate><volume>15</volume><issue>2</issue><spage>1174</spage><epage>1185</epage><pages>1174-1185</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we present a novel hybrid framework combining compressive spectrum sensing with geo-location database to find spectrum holes in a decentralized cognitive radio. In the hybrid framework, a geo-location database algorithm is proposed to be stored locally at secondary users (SUs) to remove the extra transmission link to a centralized remote geo-location database. Specifically, by utilizing the output of the locally stored geo-location database algorithm, a data-assisted noniteratively reweighted least squares (DNRLS)-based compressive spectrum sensing algorithm is proposed to improve detection performance under sub-Nyquist sampling rates for wideband spectrum sensing, and to reduce the computational complexity of signal recovery. In addition, an efficient method for the calculation of maximum allowable equivalent isotropic radiated power in TV white space (TVWS) is also designed to further support SUs. The convergence and complexity of the proposed DNRLS algorithm are analyzed theoretically. Furthermore, the proposed framework is pioneered on real-time "from air" signals and data after having been validated by simulated signals and data in TVWS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2485992</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-02, Vol.15 (2), p.1174-1185
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_7287796
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Complexity
Compressive spectrum sensing
Computer simulation
Detection
geo-location database
Minimization
Random variables
Real time
Sampling
Sensors
TV white space
Wideband
wideband spectrum sensing
Wireless communication
Wireless sensor networks
title Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Assisted%20Low%20Complexity%20Compressive%20Spectrum%20Sensing%20on%20Real-Time%20Signals%20Under%20Sub-Nyquist%20Rate&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhijin%20Qin&rft.date=2016-02&rft.volume=15&rft.issue=2&rft.spage=1174&rft.epage=1185&rft.pages=1174-1185&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2485992&rft_dat=%3Cproquest_ieee_%3E4047519021%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-d0736a9a7fef35805773e47d584fb20865e70639142623fc51fbca6539d718193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787227320&rft_id=info:pmid/&rft_ieee_id=7287796&rfr_iscdi=true