Loading…

Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system

We develop an anomaly detection and decision support system based on data collected through the Street Bump smartphone application. The system is capable of effectively classifying roadway obstacles into predefined categories using machine learning algorithms, as well as identifying actionable ones...

Full description

Saved in:
Bibliographic Details
Main Authors: Brisimi, Theodora S., Ariafar, Setareh, Yue Zhang, Cassandras, Christos G., Paschalidis, Ioannis C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1293
container_issue
container_start_page 1288
container_title
container_volume
creator Brisimi, Theodora S.
Ariafar, Setareh
Yue Zhang
Cassandras, Christos G.
Paschalidis, Ioannis C.
description We develop an anomaly detection and decision support system based on data collected through the Street Bump smartphone application. The system is capable of effectively classifying roadway obstacles into predefined categories using machine learning algorithms, as well as identifying actionable ones in need of immediate attention based on a proposed "anomaly index." We introduce appropriate regularization to the classification algorithms we employ, which has the effect of utilizing a sparse set of relevant features to perform the classification. Further, our novel "anomaly index" allows us to prioritize among actionable obstacles. Results on an actual data set provided by the City of Boston illustrate the feasibility and effectiveness of our system in practice.
doi_str_mv 10.1109/CoASE.2015.7294276
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7294276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7294276</ieee_id><sourcerecordid>7294276</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-39ef54bcd91b6f6edc0b44b7955eaa6d181d18b5d4cea1ee18f5fbac2ce0e673</originalsourceid><addsrcrecordid>eNo9UMlKA0EUbEXBEPMDeukfmNivZ3oZb2GICwQ8JPfQyxvTMhvTHWT-3kSDh6KqDlVQRcgDsCUAK5-qfrVdLzkDsVS8LLiSV2RRKg2FVLkGnefXZMZBQqaZLm_-tWJ3ZBHjF2MMlFSCixk5bLGLofukpvPUNSbGUE9nP_bGf5uJ9jYm4xqMz3R3QBrTiJioPbbDKdK3ppmox4Quhb77LfHoQjybeByGfkw0TjFhe09ua9NEXFx4TnYv6131lm0-Xt-r1SYLnOmU5SXWorDOl2BlLdE7ZovCqlIINEZ60HCCFb5waAARdC1qaxx3yPA0f04e_2oDIu6HMbRmnPaXm_If0eldYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system</title><source>IEEE Xplore All Conference Series</source><creator>Brisimi, Theodora S. ; Ariafar, Setareh ; Yue Zhang ; Cassandras, Christos G. ; Paschalidis, Ioannis C.</creator><creatorcontrib>Brisimi, Theodora S. ; Ariafar, Setareh ; Yue Zhang ; Cassandras, Christos G. ; Paschalidis, Ioannis C.</creatorcontrib><description>We develop an anomaly detection and decision support system based on data collected through the Street Bump smartphone application. The system is capable of effectively classifying roadway obstacles into predefined categories using machine learning algorithms, as well as identifying actionable ones in need of immediate attention based on a proposed "anomaly index." We introduce appropriate regularization to the classification algorithms we employ, which has the effect of utilizing a sparse set of relevant features to perform the classification. Further, our novel "anomaly index" allows us to prioritize among actionable obstacles. Results on an actual data set provided by the City of Boston illustrate the feasibility and effectiveness of our system in practice.</description><identifier>ISSN: 2161-8070</identifier><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781467381833</identifier><identifier>EISBN: 1467381837</identifier><identifier>DOI: 10.1109/CoASE.2015.7294276</identifier><language>eng</language><publisher>IEEE</publisher><subject>anomaly detection ; Cities and towns ; Classification ; Decision support systems ; Entropy ; Indexes ; Logistics ; machine learning ; smart cities ; Support vector machines ; Vehicles</subject><ispartof>2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015, p.1288-1293</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7294276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7294276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brisimi, Theodora S.</creatorcontrib><creatorcontrib>Ariafar, Setareh</creatorcontrib><creatorcontrib>Yue Zhang</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><creatorcontrib>Paschalidis, Ioannis C.</creatorcontrib><title>Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system</title><title>2015 IEEE International Conference on Automation Science and Engineering (CASE)</title><addtitle>CoASE</addtitle><description>We develop an anomaly detection and decision support system based on data collected through the Street Bump smartphone application. The system is capable of effectively classifying roadway obstacles into predefined categories using machine learning algorithms, as well as identifying actionable ones in need of immediate attention based on a proposed "anomaly index." We introduce appropriate regularization to the classification algorithms we employ, which has the effect of utilizing a sparse set of relevant features to perform the classification. Further, our novel "anomaly index" allows us to prioritize among actionable obstacles. Results on an actual data set provided by the City of Boston illustrate the feasibility and effectiveness of our system in practice.</description><subject>anomaly detection</subject><subject>Cities and towns</subject><subject>Classification</subject><subject>Decision support systems</subject><subject>Entropy</subject><subject>Indexes</subject><subject>Logistics</subject><subject>machine learning</subject><subject>smart cities</subject><subject>Support vector machines</subject><subject>Vehicles</subject><issn>2161-8070</issn><issn>2161-8089</issn><isbn>9781467381833</isbn><isbn>1467381837</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMlKA0EUbEXBEPMDeukfmNivZ3oZb2GICwQ8JPfQyxvTMhvTHWT-3kSDh6KqDlVQRcgDsCUAK5-qfrVdLzkDsVS8LLiSV2RRKg2FVLkGnefXZMZBQqaZLm_-tWJ3ZBHjF2MMlFSCixk5bLGLofukpvPUNSbGUE9nP_bGf5uJ9jYm4xqMz3R3QBrTiJioPbbDKdK3ppmox4Quhb77LfHoQjybeByGfkw0TjFhe09ua9NEXFx4TnYv6131lm0-Xt-r1SYLnOmU5SXWorDOl2BlLdE7ZovCqlIINEZ60HCCFb5waAARdC1qaxx3yPA0f04e_2oDIu6HMbRmnPaXm_If0eldYg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Brisimi, Theodora S.</creator><creator>Ariafar, Setareh</creator><creator>Yue Zhang</creator><creator>Cassandras, Christos G.</creator><creator>Paschalidis, Ioannis C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150801</creationdate><title>Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system</title><author>Brisimi, Theodora S. ; Ariafar, Setareh ; Yue Zhang ; Cassandras, Christos G. ; Paschalidis, Ioannis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-39ef54bcd91b6f6edc0b44b7955eaa6d181d18b5d4cea1ee18f5fbac2ce0e673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>anomaly detection</topic><topic>Cities and towns</topic><topic>Classification</topic><topic>Decision support systems</topic><topic>Entropy</topic><topic>Indexes</topic><topic>Logistics</topic><topic>machine learning</topic><topic>smart cities</topic><topic>Support vector machines</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Brisimi, Theodora S.</creatorcontrib><creatorcontrib>Ariafar, Setareh</creatorcontrib><creatorcontrib>Yue Zhang</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><creatorcontrib>Paschalidis, Ioannis C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brisimi, Theodora S.</au><au>Ariafar, Setareh</au><au>Yue Zhang</au><au>Cassandras, Christos G.</au><au>Paschalidis, Ioannis C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system</atitle><btitle>2015 IEEE International Conference on Automation Science and Engineering (CASE)</btitle><stitle>CoASE</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>1288</spage><epage>1293</epage><pages>1288-1293</pages><issn>2161-8070</issn><eissn>2161-8089</eissn><eisbn>9781467381833</eisbn><eisbn>1467381837</eisbn><abstract>We develop an anomaly detection and decision support system based on data collected through the Street Bump smartphone application. The system is capable of effectively classifying roadway obstacles into predefined categories using machine learning algorithms, as well as identifying actionable ones in need of immediate attention based on a proposed "anomaly index." We introduce appropriate regularization to the classification algorithms we employ, which has the effect of utilizing a sparse set of relevant features to perform the classification. Further, our novel "anomaly index" allows us to prioritize among actionable obstacles. Results on an actual data set provided by the City of Boston illustrate the feasibility and effectiveness of our system in practice.</abstract><pub>IEEE</pub><doi>10.1109/CoASE.2015.7294276</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-8070
ispartof 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015, p.1288-1293
issn 2161-8070
2161-8089
language eng
recordid cdi_ieee_primary_7294276
source IEEE Xplore All Conference Series
subjects anomaly detection
Cities and towns
Classification
Decision support systems
Entropy
Indexes
Logistics
machine learning
smart cities
Support vector machines
Vehicles
title Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensing%20and%20classifying%20roadway%20obstacles:%20The%20street%20bump%20anomaly%20detection%20and%20decision%20support%20system&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Brisimi,%20Theodora%20S.&rft.date=2015-08-01&rft.spage=1288&rft.epage=1293&rft.pages=1288-1293&rft.issn=2161-8070&rft.eissn=2161-8089&rft_id=info:doi/10.1109/CoASE.2015.7294276&rft.eisbn=9781467381833&rft.eisbn_list=1467381837&rft_dat=%3Cieee_CHZPO%3E7294276%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-39ef54bcd91b6f6edc0b44b7955eaa6d181d18b5d4cea1ee18f5fbac2ce0e673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7294276&rfr_iscdi=true