Loading…
W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network
In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by...
Saved in:
Published in: | IEEE antennas and wireless propagation letters 2016, Vol.15, p.988-991 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73 |
container_end_page | 991 |
container_issue | |
container_start_page | 988 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 15 |
creator | Cao, Baolin Wang, Hao Huang, Yong |
description | In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%. |
doi_str_mv | 10.1109/LAWP.2015.2489721 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7296630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7296630</ieee_id><sourcerecordid>4046423281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeJ2Zk48mvazDbcJ0gpNehrRJts7ZzrRT9u9t2fDqvHCe9xx4ougWyAiAJA_zNHsbUQJiRLlKJIWzaACCKyykkOd9ZjEGSsVldNU0G0JAxoINokWGH01l0axcrfHUlBVaPiH8UluH3rd1i9KqdVVlUBqCOaCsbNdoanYoMz9utS87auKcLasVenXtbx0-r6MLb7aNuznNYfQxeVqOZ3i-mD6P0zkugCmKvTLM5jbPwSeWe17QQnmesyJnigvlve9WIK3giZOGQ8FNzEESzhJqpZdsGN0f7-5C_b13Tas39T5U3UsNUnWgopJ2FBypItRNE5zXu1B-mXDQQHTvTffedO9Nn7x1nbtjp3TO_fOSJnHMCPsDiglnUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787048272</pqid></control><display><type>article</type><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><source>IEEE Xplore (Online service)</source><creator>Cao, Baolin ; Wang, Hao ; Huang, Yong</creator><creatorcontrib>Cao, Baolin ; Wang, Hao ; Huang, Yong</creatorcontrib><description>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2015.2489721</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna feeds ; Antenna measurements ; Arrays ; Bandwidth ; Gap waveguide ; high-gain ; plane array ; Slot antennas ; substrate integrated cavity ; W-band</subject><ispartof>IEEE antennas and wireless propagation letters, 2016, Vol.15, p.988-991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</citedby><cites>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7296630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Cao, Baolin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</description><subject>Antenna arrays</subject><subject>Antenna feeds</subject><subject>Antenna measurements</subject><subject>Arrays</subject><subject>Bandwidth</subject><subject>Gap waveguide</subject><subject>high-gain</subject><subject>plane array</subject><subject>Slot antennas</subject><subject>substrate integrated cavity</subject><subject>W-band</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOKc_QLwJeJ2Zk48mvazDbcJ0gpNehrRJts7ZzrRT9u9t2fDqvHCe9xx4ougWyAiAJA_zNHsbUQJiRLlKJIWzaACCKyykkOd9ZjEGSsVldNU0G0JAxoINokWGH01l0axcrfHUlBVaPiH8UluH3rd1i9KqdVVlUBqCOaCsbNdoanYoMz9utS87auKcLasVenXtbx0-r6MLb7aNuznNYfQxeVqOZ3i-mD6P0zkugCmKvTLM5jbPwSeWe17QQnmesyJnigvlve9WIK3giZOGQ8FNzEESzhJqpZdsGN0f7-5C_b13Tas39T5U3UsNUnWgopJ2FBypItRNE5zXu1B-mXDQQHTvTffedO9Nn7x1nbtjp3TO_fOSJnHMCPsDiglnUg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Cao, Baolin</creator><creator>Wang, Hao</creator><creator>Huang, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><author>Cao, Baolin ; Wang, Hao ; Huang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antenna arrays</topic><topic>Antenna feeds</topic><topic>Antenna measurements</topic><topic>Arrays</topic><topic>Bandwidth</topic><topic>Gap waveguide</topic><topic>high-gain</topic><topic>plane array</topic><topic>Slot antennas</topic><topic>substrate integrated cavity</topic><topic>W-band</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Baolin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Baolin</au><au>Wang, Hao</au><au>Huang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2016</date><risdate>2016</risdate><volume>15</volume><spage>988</spage><epage>991</epage><pages>988-991</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2015.2489721</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2016, Vol.15, p.988-991 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_ieee_primary_7296630 |
source | IEEE Xplore (Online service) |
subjects | Antenna arrays Antenna feeds Antenna measurements Arrays Bandwidth Gap waveguide high-gain plane array Slot antennas substrate integrated cavity W-band |
title | W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Band%20High-Gain%20TE%20-Mode%20Slot%20Antenna%20Array%20With%20Gap%20Waveguide%20Feeding%20Network&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Cao,%20Baolin&rft.date=2016&rft.volume=15&rft.spage=988&rft.epage=991&rft.pages=988-991&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2015.2489721&rft_dat=%3Cproquest_ieee_%3E4046423281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787048272&rft_id=info:pmid/&rft_ieee_id=7296630&rfr_iscdi=true |