Loading…

W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network

In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2016, Vol.15, p.988-991
Main Authors: Cao, Baolin, Wang, Hao, Huang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73
cites cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73
container_end_page 991
container_issue
container_start_page 988
container_title IEEE antennas and wireless propagation letters
container_volume 15
creator Cao, Baolin
Wang, Hao
Huang, Yong
description In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.
doi_str_mv 10.1109/LAWP.2015.2489721
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7296630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7296630</ieee_id><sourcerecordid>4046423281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeJ2Zk48mvazDbcJ0gpNehrRJts7ZzrRT9u9t2fDqvHCe9xx4ougWyAiAJA_zNHsbUQJiRLlKJIWzaACCKyykkOd9ZjEGSsVldNU0G0JAxoINokWGH01l0axcrfHUlBVaPiH8UluH3rd1i9KqdVVlUBqCOaCsbNdoanYoMz9utS87auKcLasVenXtbx0-r6MLb7aNuznNYfQxeVqOZ3i-mD6P0zkugCmKvTLM5jbPwSeWe17QQnmesyJnigvlve9WIK3giZOGQ8FNzEESzhJqpZdsGN0f7-5C_b13Tas39T5U3UsNUnWgopJ2FBypItRNE5zXu1B-mXDQQHTvTffedO9Nn7x1nbtjp3TO_fOSJnHMCPsDiglnUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787048272</pqid></control><display><type>article</type><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><source>IEEE Xplore (Online service)</source><creator>Cao, Baolin ; Wang, Hao ; Huang, Yong</creator><creatorcontrib>Cao, Baolin ; Wang, Hao ; Huang, Yong</creatorcontrib><description>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2015.2489721</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna feeds ; Antenna measurements ; Arrays ; Bandwidth ; Gap waveguide ; high-gain ; plane array ; Slot antennas ; substrate integrated cavity ; W-band</subject><ispartof>IEEE antennas and wireless propagation letters, 2016, Vol.15, p.988-991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</citedby><cites>FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7296630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Cao, Baolin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</description><subject>Antenna arrays</subject><subject>Antenna feeds</subject><subject>Antenna measurements</subject><subject>Arrays</subject><subject>Bandwidth</subject><subject>Gap waveguide</subject><subject>high-gain</subject><subject>plane array</subject><subject>Slot antennas</subject><subject>substrate integrated cavity</subject><subject>W-band</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOKc_QLwJeJ2Zk48mvazDbcJ0gpNehrRJts7ZzrRT9u9t2fDqvHCe9xx4ougWyAiAJA_zNHsbUQJiRLlKJIWzaACCKyykkOd9ZjEGSsVldNU0G0JAxoINokWGH01l0axcrfHUlBVaPiH8UluH3rd1i9KqdVVlUBqCOaCsbNdoanYoMz9utS87auKcLasVenXtbx0-r6MLb7aNuznNYfQxeVqOZ3i-mD6P0zkugCmKvTLM5jbPwSeWe17QQnmesyJnigvlve9WIK3giZOGQ8FNzEESzhJqpZdsGN0f7-5C_b13Tas39T5U3UsNUnWgopJ2FBypItRNE5zXu1B-mXDQQHTvTffedO9Nn7x1nbtjp3TO_fOSJnHMCPsDiglnUg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Cao, Baolin</creator><creator>Wang, Hao</creator><creator>Huang, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</title><author>Cao, Baolin ; Wang, Hao ; Huang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antenna arrays</topic><topic>Antenna feeds</topic><topic>Antenna measurements</topic><topic>Arrays</topic><topic>Bandwidth</topic><topic>Gap waveguide</topic><topic>high-gain</topic><topic>plane array</topic><topic>Slot antennas</topic><topic>substrate integrated cavity</topic><topic>W-band</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Baolin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Baolin</au><au>Wang, Hao</au><au>Huang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2016</date><risdate>2016</risdate><volume>15</volume><spage>988</spage><epage>991</epage><pages>988-991</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this letter, a high-order-mode substrate integrated cavity (SIC) excited 2 ×2-slot antenna subarray for wideband and high-gain W-band array application is presented. This antenna subarray is designed by using two low-cost double-side printed circuit broads (PCBs). The transmission loss caused by divider can be reduced by using the high-order-mode substrate integrated cavity to excite the slot antenna subarray. Furthermore, such use reduces processing difficulty and fabrication cost. The bandwidth and gain of the proposed antenna are also improved. To validate our design, an 8 ×8 antenna array with 4 ×4 SIC subarrays has been fabricated and measured. To reduce the loss further, the microstrip-based ridge gap waveguide (GWG) technology is applied to feed the SIC subarrays. Furthermore, for measurement purposes, a wideband transition structure between rectangular waveguide (RWG) and GWG is designed. Measured results show that an 8 ×8 slot array with the transition achieves a maximum boresight gain of 25.3 dBi and an impedance matching bandwidth of 82-102 GHz with a boresight gain above 24.5 dBi. In addition, the measured aperture efficiency is 64%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2015.2489721</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2016, Vol.15, p.988-991
issn 1536-1225
1548-5757
language eng
recordid cdi_ieee_primary_7296630
source IEEE Xplore (Online service)
subjects Antenna arrays
Antenna feeds
Antenna measurements
Arrays
Bandwidth
Gap waveguide
high-gain
plane array
Slot antennas
substrate integrated cavity
W-band
title W-Band High-Gain TE -Mode Slot Antenna Array With Gap Waveguide Feeding Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Band%20High-Gain%20TE%20-Mode%20Slot%20Antenna%20Array%20With%20Gap%20Waveguide%20Feeding%20Network&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Cao,%20Baolin&rft.date=2016&rft.volume=15&rft.spage=988&rft.epage=991&rft.pages=988-991&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2015.2489721&rft_dat=%3Cproquest_ieee_%3E4046423281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1382-f8a3dbdbb1f9d4f4c2c8f4b3cb38458fffbb117d549e7a41c4a641704392d7f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787048272&rft_id=info:pmid/&rft_ieee_id=7296630&rfr_iscdi=true