Loading…
Saliency detection based on MI-KSVD
In this paper, we propose a visual saliency detection algorithm with MI-KSVD, a codebook learning algorithm that balances reconstruction error and mutual incoherence of the codebook. We first segment the images into superpixels by simple linear iterative clustering (SLIC), which can improve the effi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 30 |
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Tianhao Shen Jinqing Qi |
description | In this paper, we propose a visual saliency detection algorithm with MI-KSVD, a codebook learning algorithm that balances reconstruction error and mutual incoherence of the codebook. We first segment the images into superpixels by simple linear iterative clustering (SLIC), which can improve the efficiency and correctness of the progress. Then we calculate the reconstruction errors based on the initial background propagated from the boundaries of the image. We use a weighted sum of multi-scale region-level saliency as the pixel-level saliency in order to generate a more continuous and smooth result. Based on that, we further use object recognition as a vital prior to improve the performance of our method. Experimental results on three benchmark datasets show that the proposed method performed well to reach our expectations in terms of precision and recall. |
doi_str_mv | 10.1109/ICAwST.2015.7314015 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7314015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314015</ieee_id><sourcerecordid>7314015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-a4e238dd94bba6fa3caef1cd5b020d4291532d1ce103b157152ac95c0443893e3</originalsourceid><addsrcrecordid>eNo9j81Kw0AURkdRsNQ8QTcB14n3zp2_u5SqtVhxkeq2TGZuIFKrNAHp21uwuDpn9XE-pWYINSLw7XJ-99Osaw1oa09ojjxTBfuAxnnyzgZ_riaatK0ss7n49-CuVDEMHwCA7Fg7nqibJm572aVDmWWUNPZfu7KNg-TyKC_L6rl5v79Wl13cDlKcOFVvjw_r-VO1el0cY1ZVryGMVTSiKeTMpm2j6yKlKB2mbFvQkI1mtKQzJkGgFq1Hq2Nim8AYCkxCUzX72-1FZPO97z_j_rA5XaRfcOtA_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Saliency detection based on MI-KSVD</title><source>IEEE Xplore All Conference Series</source><creator>Tianhao Shen ; Jinqing Qi</creator><creatorcontrib>Tianhao Shen ; Jinqing Qi</creatorcontrib><description>In this paper, we propose a visual saliency detection algorithm with MI-KSVD, a codebook learning algorithm that balances reconstruction error and mutual incoherence of the codebook. We first segment the images into superpixels by simple linear iterative clustering (SLIC), which can improve the efficiency and correctness of the progress. Then we calculate the reconstruction errors based on the initial background propagated from the boundaries of the image. We use a weighted sum of multi-scale region-level saliency as the pixel-level saliency in order to generate a more continuous and smooth result. Based on that, we further use object recognition as a vital prior to improve the performance of our method. Experimental results on three benchmark datasets show that the proposed method performed well to reach our expectations in terms of precision and recall.</description><identifier>ISSN: 2325-5986</identifier><identifier>EISSN: 2325-5994</identifier><identifier>EISBN: 9781467376587</identifier><identifier>EISBN: 1467376582</identifier><identifier>DOI: 10.1109/ICAwST.2015.7314015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Computational modeling ; Dictionaries ; Encoding ; Image reconstruction ; Image segmentation ; MI-KSVD ; multi-scale ; object location ; Saliency ; smoothing ; Visualization</subject><ispartof>2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST), 2015, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7314015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tianhao Shen</creatorcontrib><creatorcontrib>Jinqing Qi</creatorcontrib><title>Saliency detection based on MI-KSVD</title><title>2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST)</title><addtitle>ICAwST</addtitle><description>In this paper, we propose a visual saliency detection algorithm with MI-KSVD, a codebook learning algorithm that balances reconstruction error and mutual incoherence of the codebook. We first segment the images into superpixels by simple linear iterative clustering (SLIC), which can improve the efficiency and correctness of the progress. Then we calculate the reconstruction errors based on the initial background propagated from the boundaries of the image. We use a weighted sum of multi-scale region-level saliency as the pixel-level saliency in order to generate a more continuous and smooth result. Based on that, we further use object recognition as a vital prior to improve the performance of our method. Experimental results on three benchmark datasets show that the proposed method performed well to reach our expectations in terms of precision and recall.</description><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>MI-KSVD</subject><subject>multi-scale</subject><subject>object location</subject><subject>Saliency</subject><subject>smoothing</subject><subject>Visualization</subject><issn>2325-5986</issn><issn>2325-5994</issn><isbn>9781467376587</isbn><isbn>1467376582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81Kw0AURkdRsNQ8QTcB14n3zp2_u5SqtVhxkeq2TGZuIFKrNAHp21uwuDpn9XE-pWYINSLw7XJ-99Osaw1oa09ojjxTBfuAxnnyzgZ_riaatK0ss7n49-CuVDEMHwCA7Fg7nqibJm572aVDmWWUNPZfu7KNg-TyKC_L6rl5v79Wl13cDlKcOFVvjw_r-VO1el0cY1ZVryGMVTSiKeTMpm2j6yKlKB2mbFvQkI1mtKQzJkGgFq1Hq2Nim8AYCkxCUzX72-1FZPO97z_j_rA5XaRfcOtA_Q</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Tianhao Shen</creator><creator>Jinqing Qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150901</creationdate><title>Saliency detection based on MI-KSVD</title><author>Tianhao Shen ; Jinqing Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-a4e238dd94bba6fa3caef1cd5b020d4291532d1ce103b157152ac95c0443893e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>MI-KSVD</topic><topic>multi-scale</topic><topic>object location</topic><topic>Saliency</topic><topic>smoothing</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tianhao Shen</creatorcontrib><creatorcontrib>Jinqing Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tianhao Shen</au><au>Jinqing Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Saliency detection based on MI-KSVD</atitle><btitle>2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST)</btitle><stitle>ICAwST</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>2325-5986</issn><eissn>2325-5994</eissn><eisbn>9781467376587</eisbn><eisbn>1467376582</eisbn><abstract>In this paper, we propose a visual saliency detection algorithm with MI-KSVD, a codebook learning algorithm that balances reconstruction error and mutual incoherence of the codebook. We first segment the images into superpixels by simple linear iterative clustering (SLIC), which can improve the efficiency and correctness of the progress. Then we calculate the reconstruction errors based on the initial background propagated from the boundaries of the image. We use a weighted sum of multi-scale region-level saliency as the pixel-level saliency in order to generate a more continuous and smooth result. Based on that, we further use object recognition as a vital prior to improve the performance of our method. Experimental results on three benchmark datasets show that the proposed method performed well to reach our expectations in terms of precision and recall.</abstract><pub>IEEE</pub><doi>10.1109/ICAwST.2015.7314015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5986 |
ispartof | 2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST), 2015, p.25-30 |
issn | 2325-5986 2325-5994 |
language | eng |
recordid | cdi_ieee_primary_7314015 |
source | IEEE Xplore All Conference Series |
subjects | Biological system modeling Computational modeling Dictionaries Encoding Image reconstruction Image segmentation MI-KSVD multi-scale object location Saliency smoothing Visualization |
title | Saliency detection based on MI-KSVD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Saliency%20detection%20based%20on%20MI-KSVD&rft.btitle=2015%20IEEE%207th%20International%20Conference%20on%20Awareness%20Science%20and%20Technology%20(iCAST)&rft.au=Tianhao%20Shen&rft.date=2015-09-01&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=2325-5986&rft.eissn=2325-5994&rft_id=info:doi/10.1109/ICAwST.2015.7314015&rft.eisbn=9781467376587&rft.eisbn_list=1467376582&rft_dat=%3Cieee_CHZPO%3E7314015%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-a4e238dd94bba6fa3caef1cd5b020d4291532d1ce103b157152ac95c0443893e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7314015&rfr_iscdi=true |