Loading…

A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms

Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmitt, Wagner, Sotomayor, Jose L., Telea, Alexandru, Silva, Claudio T., Comba, Joao L. D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 233
container_issue
container_start_page 226
container_title
container_volume
creator Schmitt, Wagner
Sotomayor, Jose L.
Telea, Alexandru
Silva, Claudio T.
Comba, Joao L. D.
description Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.
doi_str_mv 10.1109/SIBGRAPI.2015.51
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7314568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314568</ieee_id><sourcerecordid>1778001005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033</originalsourceid><addsrcrecordid>eNotj01LAzEURaMoWGv3gpss3Ux9mTeTZJa11bZQUGxdD0nm1Ubny8kU7L-3UlcXLodzuYzdChgLAdnDevk4f5u8LscxiHScijM2ypQWiVSoMhmn52wQo1JRmgh5wQYiRYiExuSKXYfwCSCyTOoBW0w4zvh6Z1riMwqu823fdPzRBCp4Ux-7tt_xaVO1Jf34_sBNXfDNzruvmkLgCx_65qMzVbhhl1tTBhr955C9Pz9tpoto9TJfTieryMeg--hvNnUQGyUL1BY1klYOrUWAoigUOIsGSBJIYYGsdMXWxXEm0AqrAXHI7k_etmu-9xT6vPLBUVmampp9yIVS-vgOID2idyfUE1Hedr4y3SFXKJJUavwFX1hbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1778001005</pqid></control><display><type>conference_proceeding</type><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><source>IEEE Xplore All Conference Series</source><creator>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</creator><creatorcontrib>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</creatorcontrib><description>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</description><identifier>ISSN: 1530-1834</identifier><identifier>EISSN: 2377-5416</identifier><identifier>EISSN: 1530-1834</identifier><identifier>EISBN: 9781467379625</identifier><identifier>EISBN: 146737962X</identifier><identifier>DOI: 10.1109/SIBGRAPI.2015.51</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmarks ; Complexity ; Complexity theory ; Computational modeling ; Content-based retrieval ; Depth complexity ; Histograms ; Invariants ; Mathematical models ; Reuse ; Shape ; Shape analysis ; Shape matching ; Solid modeling ; Subdivisions ; Thickness ; Three dimensional ; Three-dimensional displays</subject><ispartof>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, 2015, p.226-233</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7314568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmitt, Wagner</creatorcontrib><creatorcontrib>Sotomayor, Jose L.</creatorcontrib><creatorcontrib>Telea, Alexandru</creatorcontrib><creatorcontrib>Silva, Claudio T.</creatorcontrib><creatorcontrib>Comba, Joao L. D.</creatorcontrib><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><title>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images</title><addtitle>SIBGRA</addtitle><description>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</description><subject>Benchmarks</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Content-based retrieval</subject><subject>Depth complexity</subject><subject>Histograms</subject><subject>Invariants</subject><subject>Mathematical models</subject><subject>Reuse</subject><subject>Shape</subject><subject>Shape analysis</subject><subject>Shape matching</subject><subject>Solid modeling</subject><subject>Subdivisions</subject><subject>Thickness</subject><subject>Three dimensional</subject><subject>Three-dimensional displays</subject><issn>1530-1834</issn><issn>2377-5416</issn><issn>1530-1834</issn><isbn>9781467379625</isbn><isbn>146737962X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LAzEURaMoWGv3gpss3Ux9mTeTZJa11bZQUGxdD0nm1Ubny8kU7L-3UlcXLodzuYzdChgLAdnDevk4f5u8LscxiHScijM2ypQWiVSoMhmn52wQo1JRmgh5wQYiRYiExuSKXYfwCSCyTOoBW0w4zvh6Z1riMwqu823fdPzRBCp4Ux-7tt_xaVO1Jf34_sBNXfDNzruvmkLgCx_65qMzVbhhl1tTBhr955C9Pz9tpoto9TJfTieryMeg--hvNnUQGyUL1BY1klYOrUWAoigUOIsGSBJIYYGsdMXWxXEm0AqrAXHI7k_etmu-9xT6vPLBUVmampp9yIVS-vgOID2idyfUE1Hedr4y3SFXKJJUavwFX1hbLA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Schmitt, Wagner</creator><creator>Sotomayor, Jose L.</creator><creator>Telea, Alexandru</creator><creator>Silva, Claudio T.</creator><creator>Comba, Joao L. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><author>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmarks</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Content-based retrieval</topic><topic>Depth complexity</topic><topic>Histograms</topic><topic>Invariants</topic><topic>Mathematical models</topic><topic>Reuse</topic><topic>Shape</topic><topic>Shape analysis</topic><topic>Shape matching</topic><topic>Solid modeling</topic><topic>Subdivisions</topic><topic>Thickness</topic><topic>Three dimensional</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Wagner</creatorcontrib><creatorcontrib>Sotomayor, Jose L.</creatorcontrib><creatorcontrib>Telea, Alexandru</creatorcontrib><creatorcontrib>Silva, Claudio T.</creatorcontrib><creatorcontrib>Comba, Joao L. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmitt, Wagner</au><au>Sotomayor, Jose L.</au><au>Telea, Alexandru</au><au>Silva, Claudio T.</au><au>Comba, Joao L. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</atitle><btitle>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images</btitle><stitle>SIBGRA</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>1530-1834</issn><eissn>2377-5416</eissn><eissn>1530-1834</eissn><eisbn>9781467379625</eisbn><eisbn>146737962X</eisbn><coden>IEEPAD</coden><abstract>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</abstract><pub>IEEE</pub><doi>10.1109/SIBGRAPI.2015.51</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1834
ispartof 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, 2015, p.226-233
issn 1530-1834
2377-5416
1530-1834
language eng
recordid cdi_ieee_primary_7314568
source IEEE Xplore All Conference Series
subjects Benchmarks
Complexity
Complexity theory
Computational modeling
Content-based retrieval
Depth complexity
Histograms
Invariants
Mathematical models
Reuse
Shape
Shape analysis
Shape matching
Solid modeling
Subdivisions
Thickness
Three dimensional
Three-dimensional displays
title A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D%20Shape%20Descriptor%20Based%20on%20Depth%20Complexity%20and%20Thickness%20Histograms&rft.btitle=2015%2028th%20SIBGRAPI%20Conference%20on%20Graphics,%20Patterns%20and%20Images&rft.au=Schmitt,%20Wagner&rft.date=2015-08-01&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=1530-1834&rft.eissn=2377-5416&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SIBGRAPI.2015.51&rft.eisbn=9781467379625&rft.eisbn_list=146737962X&rft_dat=%3Cproquest_CHZPO%3E1778001005%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778001005&rft_id=info:pmid/&rft_ieee_id=7314568&rfr_iscdi=true