Loading…
A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms
Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 233 |
container_issue | |
container_start_page | 226 |
container_title | |
container_volume | |
creator | Schmitt, Wagner Sotomayor, Jose L. Telea, Alexandru Silva, Claudio T. Comba, Joao L. D. |
description | Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness. |
doi_str_mv | 10.1109/SIBGRAPI.2015.51 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7314568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314568</ieee_id><sourcerecordid>1778001005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033</originalsourceid><addsrcrecordid>eNotj01LAzEURaMoWGv3gpss3Ux9mTeTZJa11bZQUGxdD0nm1Ubny8kU7L-3UlcXLodzuYzdChgLAdnDevk4f5u8LscxiHScijM2ypQWiVSoMhmn52wQo1JRmgh5wQYiRYiExuSKXYfwCSCyTOoBW0w4zvh6Z1riMwqu823fdPzRBCp4Ux-7tt_xaVO1Jf34_sBNXfDNzruvmkLgCx_65qMzVbhhl1tTBhr955C9Pz9tpoto9TJfTieryMeg--hvNnUQGyUL1BY1klYOrUWAoigUOIsGSBJIYYGsdMXWxXEm0AqrAXHI7k_etmu-9xT6vPLBUVmampp9yIVS-vgOID2idyfUE1Hedr4y3SFXKJJUavwFX1hbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1778001005</pqid></control><display><type>conference_proceeding</type><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><source>IEEE Xplore All Conference Series</source><creator>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</creator><creatorcontrib>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</creatorcontrib><description>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</description><identifier>ISSN: 1530-1834</identifier><identifier>EISSN: 2377-5416</identifier><identifier>EISSN: 1530-1834</identifier><identifier>EISBN: 9781467379625</identifier><identifier>EISBN: 146737962X</identifier><identifier>DOI: 10.1109/SIBGRAPI.2015.51</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmarks ; Complexity ; Complexity theory ; Computational modeling ; Content-based retrieval ; Depth complexity ; Histograms ; Invariants ; Mathematical models ; Reuse ; Shape ; Shape analysis ; Shape matching ; Solid modeling ; Subdivisions ; Thickness ; Three dimensional ; Three-dimensional displays</subject><ispartof>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, 2015, p.226-233</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7314568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmitt, Wagner</creatorcontrib><creatorcontrib>Sotomayor, Jose L.</creatorcontrib><creatorcontrib>Telea, Alexandru</creatorcontrib><creatorcontrib>Silva, Claudio T.</creatorcontrib><creatorcontrib>Comba, Joao L. D.</creatorcontrib><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><title>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images</title><addtitle>SIBGRA</addtitle><description>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</description><subject>Benchmarks</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Content-based retrieval</subject><subject>Depth complexity</subject><subject>Histograms</subject><subject>Invariants</subject><subject>Mathematical models</subject><subject>Reuse</subject><subject>Shape</subject><subject>Shape analysis</subject><subject>Shape matching</subject><subject>Solid modeling</subject><subject>Subdivisions</subject><subject>Thickness</subject><subject>Three dimensional</subject><subject>Three-dimensional displays</subject><issn>1530-1834</issn><issn>2377-5416</issn><issn>1530-1834</issn><isbn>9781467379625</isbn><isbn>146737962X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LAzEURaMoWGv3gpss3Ux9mTeTZJa11bZQUGxdD0nm1Ubny8kU7L-3UlcXLodzuYzdChgLAdnDevk4f5u8LscxiHScijM2ypQWiVSoMhmn52wQo1JRmgh5wQYiRYiExuSKXYfwCSCyTOoBW0w4zvh6Z1riMwqu823fdPzRBCp4Ux-7tt_xaVO1Jf34_sBNXfDNzruvmkLgCx_65qMzVbhhl1tTBhr955C9Pz9tpoto9TJfTieryMeg--hvNnUQGyUL1BY1klYOrUWAoigUOIsGSBJIYYGsdMXWxXEm0AqrAXHI7k_etmu-9xT6vPLBUVmampp9yIVS-vgOID2idyfUE1Hedr4y3SFXKJJUavwFX1hbLA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Schmitt, Wagner</creator><creator>Sotomayor, Jose L.</creator><creator>Telea, Alexandru</creator><creator>Silva, Claudio T.</creator><creator>Comba, Joao L. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</title><author>Schmitt, Wagner ; Sotomayor, Jose L. ; Telea, Alexandru ; Silva, Claudio T. ; Comba, Joao L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmarks</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Content-based retrieval</topic><topic>Depth complexity</topic><topic>Histograms</topic><topic>Invariants</topic><topic>Mathematical models</topic><topic>Reuse</topic><topic>Shape</topic><topic>Shape analysis</topic><topic>Shape matching</topic><topic>Solid modeling</topic><topic>Subdivisions</topic><topic>Thickness</topic><topic>Three dimensional</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Wagner</creatorcontrib><creatorcontrib>Sotomayor, Jose L.</creatorcontrib><creatorcontrib>Telea, Alexandru</creatorcontrib><creatorcontrib>Silva, Claudio T.</creatorcontrib><creatorcontrib>Comba, Joao L. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmitt, Wagner</au><au>Sotomayor, Jose L.</au><au>Telea, Alexandru</au><au>Silva, Claudio T.</au><au>Comba, Joao L. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms</atitle><btitle>2015 28th SIBGRAPI Conference on Graphics, Patterns and Images</btitle><stitle>SIBGRA</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>1530-1834</issn><eissn>2377-5416</eissn><eissn>1530-1834</eissn><eisbn>9781467379625</eisbn><eisbn>146737962X</eisbn><coden>IEEPAD</coden><abstract>Geometric models play a vital role in several fields, from the entertainment industry to scientific applications. To reduce the high cost of model creation, reusing existing models is the solution of choice. Model reuse is supported by content-based shape retrieval (CBR) techniques that help finding the desired models in massive repositories, many publicly available on the Internet. Key to efficient and effective CBR techniques are shape descriptors that accurately capture the characteristics of a shape and can discriminate between different shapes. We present a descriptor based on the distribution of two global features measured in a 3D shape, depth complexity and thickness, which respectively capture aspects of the geometry and topology of 3D shapes. The final descriptor, called DCTH (depth complexity and thickness histogram), is a 2D histogram that is invariant to the translation, rotation and scale of geometric shapes. We efficiently implement the DCTH on the GPU, allowing its use in real-time queries of large model databases. We validate the DCTH with the Princeton and Toyohashi Shape Benchmarks, containing 1815 and 10000 models respectively. Results show that DCTH can discriminate meaningful classes of these benchmarks and is fast to compute and robust against shape transformations and different levels of subdivision and smoothness.</abstract><pub>IEEE</pub><doi>10.1109/SIBGRAPI.2015.51</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1834 |
ispartof | 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, 2015, p.226-233 |
issn | 1530-1834 2377-5416 1530-1834 |
language | eng |
recordid | cdi_ieee_primary_7314568 |
source | IEEE Xplore All Conference Series |
subjects | Benchmarks Complexity Complexity theory Computational modeling Content-based retrieval Depth complexity Histograms Invariants Mathematical models Reuse Shape Shape analysis Shape matching Solid modeling Subdivisions Thickness Three dimensional Three-dimensional displays |
title | A 3D Shape Descriptor Based on Depth Complexity and Thickness Histograms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D%20Shape%20Descriptor%20Based%20on%20Depth%20Complexity%20and%20Thickness%20Histograms&rft.btitle=2015%2028th%20SIBGRAPI%20Conference%20on%20Graphics,%20Patterns%20and%20Images&rft.au=Schmitt,%20Wagner&rft.date=2015-08-01&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=1530-1834&rft.eissn=2377-5416&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SIBGRAPI.2015.51&rft.eisbn=9781467379625&rft.eisbn_list=146737962X&rft_dat=%3Cproquest_CHZPO%3E1778001005%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-19965c02a76d38b383e87c3bb300ddd70cb3a0e6e061b0eb6cdfc22913b1b8033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778001005&rft_id=info:pmid/&rft_ieee_id=7314568&rfr_iscdi=true |