Loading…

Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System

In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few her...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2016-02, Vol.65 (2), p.255-263
Main Authors: Kazemi, Somayeh, Ghorbani, Ayaz, Amindavar, Hamidreza, Morgan, Dennis R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13
cites cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13
container_end_page 263
container_issue 2
container_start_page 255
container_title IEEE transactions on instrumentation and measurement
container_volume 65
creator Kazemi, Somayeh
Ghorbani, Ayaz
Amindavar, Hamidreza
Morgan, Dennis R.
description In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.
doi_str_mv 10.1109/TIM.2015.2482230
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7314944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314944</ieee_id><sourcerecordid>3911989721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkknktbaltoUXoQ5fDzcydktImNUnB9tc7teLqHi7nAR8hj5z1OGfFy3Iy68WMJ71Y5nEs2BXp8CTJoiJN42vSYYznUSGT9Jbceb9hjGWpzDrk9KEDbKOFXhs6_A4OqqCtoSuvzZr2rQ2-_e2jPnis6QgNOtjqU6s_waktBrp0YHxj3Y5qQ8cILlAwNZ2j32sHv2Uza3Sw7tw4hxocXRx9wN09uWlg6_Hh73bJ6m24HIyj6ftoMnidRpVIeYhkxjBvOAJPeJo1FSipWFLnTSxlXIhWgIJGJSJWqkrzGpWoMlWAEHkhELnokudL797ZrwP6UG7swZl2suRZIgSThZCti11clbPeO2zKvdM7cMeSs_JMuGwJl2fC5R_hNvJ0iWhE_LdngstCSvEDunN5dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753304934</pqid></control><display><type>article</type><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><source>IEEE Xplore (Online service)</source><creator>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</creator><creatorcontrib>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</creatorcontrib><description>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2015.2482230</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bootstrap method ; Digital broadcasting ; Doppler radar ; Frequency modulation ; generalized warblet transform (GWT) ; nonlinear frequency modulation ; nonstationary signal ; Radar ; Signal processing ; Signal to noise ratio ; Time-frequency analysis ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2016-02, Vol.65 (2), p.255-263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</citedby><cites>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kazemi, Somayeh</creatorcontrib><creatorcontrib>Ghorbani, Ayaz</creatorcontrib><creatorcontrib>Amindavar, Hamidreza</creatorcontrib><creatorcontrib>Morgan, Dennis R.</creatorcontrib><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</description><subject>Bootstrap method</subject><subject>Digital broadcasting</subject><subject>Doppler radar</subject><subject>Frequency modulation</subject><subject>generalized warblet transform (GWT)</subject><subject>nonlinear frequency modulation</subject><subject>nonstationary signal</subject><subject>Radar</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkknktbaltoUXoQ5fDzcydktImNUnB9tc7teLqHi7nAR8hj5z1OGfFy3Iy68WMJ71Y5nEs2BXp8CTJoiJN42vSYYznUSGT9Jbceb9hjGWpzDrk9KEDbKOFXhs6_A4OqqCtoSuvzZr2rQ2-_e2jPnis6QgNOtjqU6s_waktBrp0YHxj3Y5qQ8cILlAwNZ2j32sHv2Uza3Sw7tw4hxocXRx9wN09uWlg6_Hh73bJ6m24HIyj6ftoMnidRpVIeYhkxjBvOAJPeJo1FSipWFLnTSxlXIhWgIJGJSJWqkrzGpWoMlWAEHkhELnokudL797ZrwP6UG7swZl2suRZIgSThZCti11clbPeO2zKvdM7cMeSs_JMuGwJl2fC5R_hNvJ0iWhE_LdngstCSvEDunN5dQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kazemi, Somayeh</creator><creator>Ghorbani, Ayaz</creator><creator>Amindavar, Hamidreza</creator><creator>Morgan, Dennis R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><author>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bootstrap method</topic><topic>Digital broadcasting</topic><topic>Doppler radar</topic><topic>Frequency modulation</topic><topic>generalized warblet transform (GWT)</topic><topic>nonlinear frequency modulation</topic><topic>nonstationary signal</topic><topic>Radar</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, Somayeh</creatorcontrib><creatorcontrib>Ghorbani, Ayaz</creatorcontrib><creatorcontrib>Amindavar, Hamidreza</creatorcontrib><creatorcontrib>Morgan, Dennis R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, Somayeh</au><au>Ghorbani, Ayaz</au><au>Amindavar, Hamidreza</au><au>Morgan, Dennis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>65</volume><issue>2</issue><spage>255</spage><epage>263</epage><pages>255-263</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2015.2482230</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2016-02, Vol.65 (2), p.255-263
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_7314944
source IEEE Xplore (Online service)
subjects Bootstrap method
Digital broadcasting
Doppler radar
Frequency modulation
generalized warblet transform (GWT)
nonlinear frequency modulation
nonstationary signal
Radar
Signal processing
Signal to noise ratio
Time-frequency analysis
Transforms
title Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vital-Sign%20Extraction%20Using%20Bootstrap-Based%20Generalized%20Warblet%20Transform%20in%20Heart%20and%20Respiration%20Monitoring%20Radar%20System&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Kazemi,%20Somayeh&rft.date=2016-02-01&rft.volume=65&rft.issue=2&rft.spage=255&rft.epage=263&rft.pages=255-263&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2015.2482230&rft_dat=%3Cproquest_ieee_%3E3911989721%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753304934&rft_id=info:pmid/&rft_ieee_id=7314944&rfr_iscdi=true