Loading…
Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System
In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few her...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2016-02, Vol.65 (2), p.255-263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13 |
container_end_page | 263 |
container_issue | 2 |
container_start_page | 255 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 65 |
creator | Kazemi, Somayeh Ghorbani, Ayaz Amindavar, Hamidreza Morgan, Dennis R. |
description | In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide. |
doi_str_mv | 10.1109/TIM.2015.2482230 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7314944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314944</ieee_id><sourcerecordid>3911989721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkknktbaltoUXoQ5fDzcydktImNUnB9tc7teLqHi7nAR8hj5z1OGfFy3Iy68WMJ71Y5nEs2BXp8CTJoiJN42vSYYznUSGT9Jbceb9hjGWpzDrk9KEDbKOFXhs6_A4OqqCtoSuvzZr2rQ2-_e2jPnis6QgNOtjqU6s_waktBrp0YHxj3Y5qQ8cILlAwNZ2j32sHv2Uza3Sw7tw4hxocXRx9wN09uWlg6_Hh73bJ6m24HIyj6ftoMnidRpVIeYhkxjBvOAJPeJo1FSipWFLnTSxlXIhWgIJGJSJWqkrzGpWoMlWAEHkhELnokudL797ZrwP6UG7swZl2suRZIgSThZCti11clbPeO2zKvdM7cMeSs_JMuGwJl2fC5R_hNvJ0iWhE_LdngstCSvEDunN5dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753304934</pqid></control><display><type>article</type><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><source>IEEE Xplore (Online service)</source><creator>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</creator><creatorcontrib>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</creatorcontrib><description>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2015.2482230</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bootstrap method ; Digital broadcasting ; Doppler radar ; Frequency modulation ; generalized warblet transform (GWT) ; nonlinear frequency modulation ; nonstationary signal ; Radar ; Signal processing ; Signal to noise ratio ; Time-frequency analysis ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2016-02, Vol.65 (2), p.255-263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</citedby><cites>FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kazemi, Somayeh</creatorcontrib><creatorcontrib>Ghorbani, Ayaz</creatorcontrib><creatorcontrib>Amindavar, Hamidreza</creatorcontrib><creatorcontrib>Morgan, Dennis R.</creatorcontrib><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</description><subject>Bootstrap method</subject><subject>Digital broadcasting</subject><subject>Doppler radar</subject><subject>Frequency modulation</subject><subject>generalized warblet transform (GWT)</subject><subject>nonlinear frequency modulation</subject><subject>nonstationary signal</subject><subject>Radar</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkknktbaltoUXoQ5fDzcydktImNUnB9tc7teLqHi7nAR8hj5z1OGfFy3Iy68WMJ71Y5nEs2BXp8CTJoiJN42vSYYznUSGT9Jbceb9hjGWpzDrk9KEDbKOFXhs6_A4OqqCtoSuvzZr2rQ2-_e2jPnis6QgNOtjqU6s_waktBrp0YHxj3Y5qQ8cILlAwNZ2j32sHv2Uza3Sw7tw4hxocXRx9wN09uWlg6_Hh73bJ6m24HIyj6ftoMnidRpVIeYhkxjBvOAJPeJo1FSipWFLnTSxlXIhWgIJGJSJWqkrzGpWoMlWAEHkhELnokudL797ZrwP6UG7swZl2suRZIgSThZCti11clbPeO2zKvdM7cMeSs_JMuGwJl2fC5R_hNvJ0iWhE_LdngstCSvEDunN5dQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kazemi, Somayeh</creator><creator>Ghorbani, Ayaz</creator><creator>Amindavar, Hamidreza</creator><creator>Morgan, Dennis R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</title><author>Kazemi, Somayeh ; Ghorbani, Ayaz ; Amindavar, Hamidreza ; Morgan, Dennis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bootstrap method</topic><topic>Digital broadcasting</topic><topic>Doppler radar</topic><topic>Frequency modulation</topic><topic>generalized warblet transform (GWT)</topic><topic>nonlinear frequency modulation</topic><topic>nonstationary signal</topic><topic>Radar</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, Somayeh</creatorcontrib><creatorcontrib>Ghorbani, Ayaz</creatorcontrib><creatorcontrib>Amindavar, Hamidreza</creatorcontrib><creatorcontrib>Morgan, Dennis R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, Somayeh</au><au>Ghorbani, Ayaz</au><au>Amindavar, Hamidreza</au><au>Morgan, Dennis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>65</volume><issue>2</issue><spage>255</spage><epage>263</epage><pages>255-263</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In biomedical Doppler radar applications, the return signal is a nonlinear frequency-modulation (NLFM) random process whose phase conveys heart and respiration vital-sign information. These signatures modulate the phase of the signal as two oscillating components with frequencies less than a few hertz. Due to the nonstationary nature of these signals, their analysis by 1-D techniques, temporal and spectral, may not be very useful, and time-frequency techniques may be incapable of accurately extracting their instantaneous frequency (IF) trajectory. In this paper, we present a bootstrap-based generalized warblet transform (GWT) signal processing method. The presented signal processing tool is a parametric method that has a kernel with Fourier-series components. The coefficients of the kernel are estimated by an iteration procedure that converges to the IF of the radar signal. We show theoretically and experimentally that the bootstrap-based GWT can extract the amplitude and frequency of the two vital-sign components at a range of 3 m in the face of low signal-to-noise ratio and in the presence of phase noise and body motion artifacts, achieving an accuracy that is potentially better than conventional methods can provide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2015.2482230</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2016-02, Vol.65 (2), p.255-263 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_7314944 |
source | IEEE Xplore (Online service) |
subjects | Bootstrap method Digital broadcasting Doppler radar Frequency modulation generalized warblet transform (GWT) nonlinear frequency modulation nonstationary signal Radar Signal processing Signal to noise ratio Time-frequency analysis Transforms |
title | Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vital-Sign%20Extraction%20Using%20Bootstrap-Based%20Generalized%20Warblet%20Transform%20in%20Heart%20and%20Respiration%20Monitoring%20Radar%20System&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Kazemi,%20Somayeh&rft.date=2016-02-01&rft.volume=65&rft.issue=2&rft.spage=255&rft.epage=263&rft.pages=255-263&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2015.2482230&rft_dat=%3Cproquest_ieee_%3E3911989721%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-470e8f1ea15167fcab4b05d8f244293d8fabafb532bbc68deb3c7b9a33893ee13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753304934&rft_id=info:pmid/&rft_ieee_id=7314944&rfr_iscdi=true |