Loading…
A novel delta check method for detecting laboratory errors
Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes....
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sourati, J. Erdogmus, D. Akcakaya, M. Kazmierczak, S. C. Leen, T. K. |
description | Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors. |
doi_str_mv | 10.1109/MLSP.2015.7324343 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7324343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7324343</ieee_id><sourcerecordid>7324343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043</originalsourceid><addsrcrecordid>eNotj11LwzAYhaMoWOd-gHiTP9CaNx9N6t0YToWKggrejXy8ddVukTQI-_dW3NWBw-HhOYRcAqsAWHP92L48V5yBqrTgUkhxROaNNiBrLbRUUh2Tggttyoab9xNSgFJQciXhjJyP4ydjkguAgtws6C7-4EADDtlSv0H_RbeYNzHQLqapzuhzv_ugg3Ux2RzTnmJKMY0X5LSzw4jzQ87I2-r2dXlftk93D8tFW_bARS5r5jrjJIQw2TJlauOC9YFZDH-yrLM15-icldyg8B5cbUOHxplp4ZkUM3L1z-0Rcf2d-q1N-_XhtvgFM5NKlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel delta check method for detecting laboratory errors</title><source>IEEE Xplore All Conference Series</source><creator>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</creator><creatorcontrib>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</creatorcontrib><description>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</description><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781467374545</identifier><identifier>EISBN: 1467374547</identifier><identifier>DOI: 10.1109/MLSP.2015.7324343</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calcium ; Current measurement ; Delta check ; Kernel ; lab error detection ; Measurement uncertainty ; Potassium ; Signal processing algorithms ; sufficient statistics</subject><ispartof>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), 2015, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7324343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7324343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sourati, J.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Akcakaya, M.</creatorcontrib><creatorcontrib>Kazmierczak, S. C.</creatorcontrib><creatorcontrib>Leen, T. K.</creatorcontrib><title>A novel delta check method for detecting laboratory errors</title><title>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</description><subject>Calcium</subject><subject>Current measurement</subject><subject>Delta check</subject><subject>Kernel</subject><subject>lab error detection</subject><subject>Measurement uncertainty</subject><subject>Potassium</subject><subject>Signal processing algorithms</subject><subject>sufficient statistics</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781467374545</isbn><isbn>1467374547</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhaMoWOd-gHiTP9CaNx9N6t0YToWKggrejXy8ddVukTQI-_dW3NWBw-HhOYRcAqsAWHP92L48V5yBqrTgUkhxROaNNiBrLbRUUh2Tggttyoab9xNSgFJQciXhjJyP4ydjkguAgtws6C7-4EADDtlSv0H_RbeYNzHQLqapzuhzv_ugg3Ux2RzTnmJKMY0X5LSzw4jzQ87I2-r2dXlftk93D8tFW_bARS5r5jrjJIQw2TJlauOC9YFZDH-yrLM15-icldyg8B5cbUOHxplp4ZkUM3L1z-0Rcf2d-q1N-_XhtvgFM5NKlg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Sourati, J.</creator><creator>Erdogmus, D.</creator><creator>Akcakaya, M.</creator><creator>Kazmierczak, S. C.</creator><creator>Leen, T. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150901</creationdate><title>A novel delta check method for detecting laboratory errors</title><author>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calcium</topic><topic>Current measurement</topic><topic>Delta check</topic><topic>Kernel</topic><topic>lab error detection</topic><topic>Measurement uncertainty</topic><topic>Potassium</topic><topic>Signal processing algorithms</topic><topic>sufficient statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Sourati, J.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Akcakaya, M.</creatorcontrib><creatorcontrib>Kazmierczak, S. C.</creatorcontrib><creatorcontrib>Leen, T. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sourati, J.</au><au>Erdogmus, D.</au><au>Akcakaya, M.</au><au>Kazmierczak, S. C.</au><au>Leen, T. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel delta check method for detecting laboratory errors</atitle><btitle>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><eisbn>9781467374545</eisbn><eisbn>1467374547</eisbn><abstract>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2015.7324343</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), 2015, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_7324343 |
source | IEEE Xplore All Conference Series |
subjects | Calcium Current measurement Delta check Kernel lab error detection Measurement uncertainty Potassium Signal processing algorithms sufficient statistics |
title | A novel delta check method for detecting laboratory errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20delta%20check%20method%20for%20detecting%20laboratory%20errors&rft.btitle=2015%20IEEE%2025th%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Sourati,%20J.&rft.date=2015-09-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft_id=info:doi/10.1109/MLSP.2015.7324343&rft.eisbn=9781467374545&rft.eisbn_list=1467374547&rft_dat=%3Cieee_CHZPO%3E7324343%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7324343&rfr_iscdi=true |