Loading…

A novel delta check method for detecting laboratory errors

Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes....

Full description

Saved in:
Bibliographic Details
Main Authors: Sourati, J., Erdogmus, D., Akcakaya, M., Kazmierczak, S. C., Leen, T. K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Sourati, J.
Erdogmus, D.
Akcakaya, M.
Kazmierczak, S. C.
Leen, T. K.
description Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.
doi_str_mv 10.1109/MLSP.2015.7324343
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7324343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7324343</ieee_id><sourcerecordid>7324343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043</originalsourceid><addsrcrecordid>eNotj11LwzAYhaMoWOd-gHiTP9CaNx9N6t0YToWKggrejXy8ddVukTQI-_dW3NWBw-HhOYRcAqsAWHP92L48V5yBqrTgUkhxROaNNiBrLbRUUh2Tggttyoab9xNSgFJQciXhjJyP4ydjkguAgtws6C7-4EADDtlSv0H_RbeYNzHQLqapzuhzv_ugg3Ux2RzTnmJKMY0X5LSzw4jzQ87I2-r2dXlftk93D8tFW_bARS5r5jrjJIQw2TJlauOC9YFZDH-yrLM15-icldyg8B5cbUOHxplp4ZkUM3L1z-0Rcf2d-q1N-_XhtvgFM5NKlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel delta check method for detecting laboratory errors</title><source>IEEE Xplore All Conference Series</source><creator>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</creator><creatorcontrib>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</creatorcontrib><description>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</description><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781467374545</identifier><identifier>EISBN: 1467374547</identifier><identifier>DOI: 10.1109/MLSP.2015.7324343</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calcium ; Current measurement ; Delta check ; Kernel ; lab error detection ; Measurement uncertainty ; Potassium ; Signal processing algorithms ; sufficient statistics</subject><ispartof>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), 2015, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7324343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7324343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sourati, J.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Akcakaya, M.</creatorcontrib><creatorcontrib>Kazmierczak, S. C.</creatorcontrib><creatorcontrib>Leen, T. K.</creatorcontrib><title>A novel delta check method for detecting laboratory errors</title><title>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</description><subject>Calcium</subject><subject>Current measurement</subject><subject>Delta check</subject><subject>Kernel</subject><subject>lab error detection</subject><subject>Measurement uncertainty</subject><subject>Potassium</subject><subject>Signal processing algorithms</subject><subject>sufficient statistics</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781467374545</isbn><isbn>1467374547</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhaMoWOd-gHiTP9CaNx9N6t0YToWKggrejXy8ddVukTQI-_dW3NWBw-HhOYRcAqsAWHP92L48V5yBqrTgUkhxROaNNiBrLbRUUh2Tggttyoab9xNSgFJQciXhjJyP4ydjkguAgtws6C7-4EADDtlSv0H_RbeYNzHQLqapzuhzv_ugg3Ux2RzTnmJKMY0X5LSzw4jzQ87I2-r2dXlftk93D8tFW_bARS5r5jrjJIQw2TJlauOC9YFZDH-yrLM15-icldyg8B5cbUOHxplp4ZkUM3L1z-0Rcf2d-q1N-_XhtvgFM5NKlg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Sourati, J.</creator><creator>Erdogmus, D.</creator><creator>Akcakaya, M.</creator><creator>Kazmierczak, S. C.</creator><creator>Leen, T. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150901</creationdate><title>A novel delta check method for detecting laboratory errors</title><author>Sourati, J. ; Erdogmus, D. ; Akcakaya, M. ; Kazmierczak, S. C. ; Leen, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calcium</topic><topic>Current measurement</topic><topic>Delta check</topic><topic>Kernel</topic><topic>lab error detection</topic><topic>Measurement uncertainty</topic><topic>Potassium</topic><topic>Signal processing algorithms</topic><topic>sufficient statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Sourati, J.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Akcakaya, M.</creatorcontrib><creatorcontrib>Kazmierczak, S. C.</creatorcontrib><creatorcontrib>Leen, T. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sourati, J.</au><au>Erdogmus, D.</au><au>Akcakaya, M.</au><au>Kazmierczak, S. C.</au><au>Leen, T. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel delta check method for detecting laboratory errors</atitle><btitle>2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><eisbn>9781467374545</eisbn><eisbn>1467374547</eisbn><abstract>Investigating the variation of clinical measurements of patients over time is a common technique, known as delta check, for detecting laboratory errors. They are based on the expected biological variations and machine imprecision, where the latter varies for different concentrations of the analytes. Here, we present a novel delta check method in the form of composite thresholding, and provide its sufficient statistics by constructing the corresponding discriminant function, which enables us to use statistical and learning analysis tools. Using the scores obtained from such a discriminant function, we statistically study the performance of our algorithm on a labeled data set for the purpose of detecting lab errors.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2015.7324343</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), 2015, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_7324343
source IEEE Xplore All Conference Series
subjects Calcium
Current measurement
Delta check
Kernel
lab error detection
Measurement uncertainty
Potassium
Signal processing algorithms
sufficient statistics
title A novel delta check method for detecting laboratory errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20delta%20check%20method%20for%20detecting%20laboratory%20errors&rft.btitle=2015%20IEEE%2025th%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Sourati,%20J.&rft.date=2015-09-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft_id=info:doi/10.1109/MLSP.2015.7324343&rft.eisbn=9781467374545&rft.eisbn_list=1467374547&rft_dat=%3Cieee_CHZPO%3E7324343%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-60bf8b41dd01505868bdacd0aed46730fa622ebba428e3cc1b6adfe8b8aedc043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7324343&rfr_iscdi=true