Loading…
cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA
We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 142 |
container_issue | |
container_start_page | 139 |
container_title | |
container_volume | |
creator | Scott, Grant J. Angelov, Georgi A. Reinig, Michael L. Gaudiello, Eric C. England, Matthew R. |
description | We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques. |
doi_str_mv | 10.1109/IGARSS.2015.7325718 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7325718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7325718</ieee_id><sourcerecordid>7325718</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733</originalsourceid><addsrcrecordid>eNot0N1KwzAcBfAoCs65J9hNXqA1H02Tv3elujmcDNzm7UiTdEZiV5o68e0t2KvzuzpwDkJzSlJKCdyvlsXbdpsyQkUqOROSqgt0SzMJIIGBuEQTRgVPJCH8anQOkN-gWYyfhBAKWQ45m6AXc9754B7w63foB5xdwK3udAgDju4UW917HbDVvcZtdzIuRt8c8Y_vP_CmdU35jnVjcbl_LO7Qda1DdLMxp2i_eNqVz8l6s1yVxTrxjKg-qaiUmWKKGscIaKpYZqViVpiqrsA4TpSyIGqd22GrAC6FYlDVxHAOQnI-RfP_Xu-cO7Sd_9Ld72H8gf8BE8BOnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</creator><creatorcontrib>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</creatorcontrib><description>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</description><identifier>ISSN: 2153-6996</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1479979295</identifier><identifier>EISBN: 9781479979295</identifier><identifier>DOI: 10.1109/IGARSS.2015.7325718</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; cvTile ; Data processing ; Geospatial analysis ; GPU ; Graphics processing units ; HPC ; Image Processing ; Kernel ; Libraries</subject><ispartof>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, p.139-142</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7325718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7325718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scott, Grant J.</creatorcontrib><creatorcontrib>Angelov, Georgi A.</creatorcontrib><creatorcontrib>Reinig, Michael L.</creatorcontrib><creatorcontrib>Gaudiello, Eric C.</creatorcontrib><creatorcontrib>England, Matthew R.</creatorcontrib><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><title>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</title><addtitle>IGARSS</addtitle><description>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>cvTile</subject><subject>Data processing</subject><subject>Geospatial analysis</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>HPC</subject><subject>Image Processing</subject><subject>Kernel</subject><subject>Libraries</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1479979295</isbn><isbn>9781479979295</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0N1KwzAcBfAoCs65J9hNXqA1H02Tv3elujmcDNzm7UiTdEZiV5o68e0t2KvzuzpwDkJzSlJKCdyvlsXbdpsyQkUqOROSqgt0SzMJIIGBuEQTRgVPJCH8anQOkN-gWYyfhBAKWQ45m6AXc9754B7w63foB5xdwK3udAgDju4UW917HbDVvcZtdzIuRt8c8Y_vP_CmdU35jnVjcbl_LO7Qda1DdLMxp2i_eNqVz8l6s1yVxTrxjKg-qaiUmWKKGscIaKpYZqViVpiqrsA4TpSyIGqd22GrAC6FYlDVxHAOQnI-RfP_Xu-cO7Sd_9Ld72H8gf8BE8BOnA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Scott, Grant J.</creator><creator>Angelov, Georgi A.</creator><creator>Reinig, Michael L.</creator><creator>Gaudiello, Eric C.</creator><creator>England, Matthew R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150701</creationdate><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><author>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>cvTile</topic><topic>Data processing</topic><topic>Geospatial analysis</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>HPC</topic><topic>Image Processing</topic><topic>Kernel</topic><topic>Libraries</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott, Grant J.</creatorcontrib><creatorcontrib>Angelov, Georgi A.</creatorcontrib><creatorcontrib>Reinig, Michael L.</creatorcontrib><creatorcontrib>Gaudiello, Eric C.</creatorcontrib><creatorcontrib>England, Matthew R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scott, Grant J.</au><au>Angelov, Georgi A.</au><au>Reinig, Michael L.</au><au>Gaudiello, Eric C.</au><au>England, Matthew R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</atitle><btitle>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</btitle><stitle>IGARSS</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>139</spage><epage>142</epage><pages>139-142</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><eisbn>1479979295</eisbn><eisbn>9781479979295</eisbn><abstract>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2015.7325718</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, p.139-142 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_7325718 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Algorithm design and analysis cvTile Data processing Geospatial analysis GPU Graphics processing units HPC Image Processing Kernel Libraries |
title | cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=cvTile:%20Multilevel%20parallel%20geospatial%20data%20processing%20with%20OpenCV%20and%20CUDA&rft.btitle=2015%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20(IGARSS)&rft.au=Scott,%20Grant%20J.&rft.date=2015-07-01&rft.spage=139&rft.epage=142&rft.pages=139-142&rft.issn=2153-6996&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2015.7325718&rft.eisbn=1479979295&rft.eisbn_list=9781479979295&rft_dat=%3Cieee_6IE%3E7325718%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7325718&rfr_iscdi=true |