Loading…

cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA

We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used...

Full description

Saved in:
Bibliographic Details
Main Authors: Scott, Grant J., Angelov, Georgi A., Reinig, Michael L., Gaudiello, Eric C., England, Matthew R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 142
container_issue
container_start_page 139
container_title
container_volume
creator Scott, Grant J.
Angelov, Georgi A.
Reinig, Michael L.
Gaudiello, Eric C.
England, Matthew R.
description We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.
doi_str_mv 10.1109/IGARSS.2015.7325718
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7325718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7325718</ieee_id><sourcerecordid>7325718</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733</originalsourceid><addsrcrecordid>eNot0N1KwzAcBfAoCs65J9hNXqA1H02Tv3elujmcDNzm7UiTdEZiV5o68e0t2KvzuzpwDkJzSlJKCdyvlsXbdpsyQkUqOROSqgt0SzMJIIGBuEQTRgVPJCH8anQOkN-gWYyfhBAKWQ45m6AXc9754B7w63foB5xdwK3udAgDju4UW917HbDVvcZtdzIuRt8c8Y_vP_CmdU35jnVjcbl_LO7Qda1DdLMxp2i_eNqVz8l6s1yVxTrxjKg-qaiUmWKKGscIaKpYZqViVpiqrsA4TpSyIGqd22GrAC6FYlDVxHAOQnI-RfP_Xu-cO7Sd_9Ld72H8gf8BE8BOnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</creator><creatorcontrib>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</creatorcontrib><description>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</description><identifier>ISSN: 2153-6996</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1479979295</identifier><identifier>EISBN: 9781479979295</identifier><identifier>DOI: 10.1109/IGARSS.2015.7325718</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; cvTile ; Data processing ; Geospatial analysis ; GPU ; Graphics processing units ; HPC ; Image Processing ; Kernel ; Libraries</subject><ispartof>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, p.139-142</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7325718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7325718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scott, Grant J.</creatorcontrib><creatorcontrib>Angelov, Georgi A.</creatorcontrib><creatorcontrib>Reinig, Michael L.</creatorcontrib><creatorcontrib>Gaudiello, Eric C.</creatorcontrib><creatorcontrib>England, Matthew R.</creatorcontrib><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><title>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</title><addtitle>IGARSS</addtitle><description>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>cvTile</subject><subject>Data processing</subject><subject>Geospatial analysis</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>HPC</subject><subject>Image Processing</subject><subject>Kernel</subject><subject>Libraries</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1479979295</isbn><isbn>9781479979295</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0N1KwzAcBfAoCs65J9hNXqA1H02Tv3elujmcDNzm7UiTdEZiV5o68e0t2KvzuzpwDkJzSlJKCdyvlsXbdpsyQkUqOROSqgt0SzMJIIGBuEQTRgVPJCH8anQOkN-gWYyfhBAKWQ45m6AXc9754B7w63foB5xdwK3udAgDju4UW917HbDVvcZtdzIuRt8c8Y_vP_CmdU35jnVjcbl_LO7Qda1DdLMxp2i_eNqVz8l6s1yVxTrxjKg-qaiUmWKKGscIaKpYZqViVpiqrsA4TpSyIGqd22GrAC6FYlDVxHAOQnI-RfP_Xu-cO7Sd_9Ld72H8gf8BE8BOnA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Scott, Grant J.</creator><creator>Angelov, Georgi A.</creator><creator>Reinig, Michael L.</creator><creator>Gaudiello, Eric C.</creator><creator>England, Matthew R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150701</creationdate><title>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</title><author>Scott, Grant J. ; Angelov, Georgi A. ; Reinig, Michael L. ; Gaudiello, Eric C. ; England, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>cvTile</topic><topic>Data processing</topic><topic>Geospatial analysis</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>HPC</topic><topic>Image Processing</topic><topic>Kernel</topic><topic>Libraries</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott, Grant J.</creatorcontrib><creatorcontrib>Angelov, Georgi A.</creatorcontrib><creatorcontrib>Reinig, Michael L.</creatorcontrib><creatorcontrib>Gaudiello, Eric C.</creatorcontrib><creatorcontrib>England, Matthew R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scott, Grant J.</au><au>Angelov, Georgi A.</au><au>Reinig, Michael L.</au><au>Gaudiello, Eric C.</au><au>England, Matthew R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA</atitle><btitle>2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</btitle><stitle>IGARSS</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>139</spage><epage>142</epage><pages>139-142</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><eisbn>1479979295</eisbn><eisbn>9781479979295</eisbn><abstract>We are publishing an open source library to facilitate the use of three key image processing technologies (GDAL, OpenCV, CUDA) for scalable, high performance geospatial data processing. Herein, we present two computationally demanding algorithms for geospatial data processing which are commonly used for complex structural analysis of imagery. We show that processing time can be reduced by 98.1% and 84.3% for two computationally complex structural analysis algorithms using GPU co-processors over a pure CPU solution. It is our hope that the geoscience community will benefit from, and extend, this library; accelerating the development and integration of novel image processing, pattern recognition, and image information mining techniques.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2015.7325718</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, p.139-142
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_7325718
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Algorithm design and analysis
cvTile
Data processing
Geospatial analysis
GPU
Graphics processing units
HPC
Image Processing
Kernel
Libraries
title cvTile: Multilevel parallel geospatial data processing with OpenCV and CUDA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=cvTile:%20Multilevel%20parallel%20geospatial%20data%20processing%20with%20OpenCV%20and%20CUDA&rft.btitle=2015%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20(IGARSS)&rft.au=Scott,%20Grant%20J.&rft.date=2015-07-01&rft.spage=139&rft.epage=142&rft.pages=139-142&rft.issn=2153-6996&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2015.7325718&rft.eisbn=1479979295&rft.eisbn_list=9781479979295&rft_dat=%3Cieee_6IE%3E7325718%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-b17748281ce209a1824d782d5cbfb9ce3088d95fa6d10959375829bf0c3395733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7325718&rfr_iscdi=true