Loading…
A Spatio-Temporal Data-Mining Approach for Identification of Potential Fishing Zones Based on Oceanographic Characteristics in the Eastern Indian Ocean
The traditional approach for determining potential fishing zones (PFZs) relies on oceanographic factors (biological, physical, and chemical) and fishermen's expertise. This approach has disadvantages particularly when it comes to the analysis of combining these factors to find an exact PFZ spat...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2016-08, Vol.9 (8), p.3720-3728 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The traditional approach for determining potential fishing zones (PFZs) relies on oceanographic factors (biological, physical, and chemical) and fishermen's expertise. This approach has disadvantages particularly when it comes to the analysis of combining these factors to find an exact PFZ spatially and temporally. In this study, we proposed a framework for identifying PFZs based on a data-mining approach in the Eastern Indian Ocean. We utilized a spatio-temporal clustering method to identify clusters of zones with data on the largest number of fish catch, which were then integrated with the sea surface temperature (SST) and the sea surface chlorophyll a (SSC) data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The results of this data integration method were used as training data in the classification process, which was then used to determine PFZs. During the classification process, we utilized the k-nearest neighbor (KNN) classification method. The result gave an average accuracy of 87.11%, which showed that the proposed framework can be used effectively to determine PFZs. To validate the framework, we compared its performance against the heuristic rules taken from the knowledge-based expert system model on the SST and chlorophyll a data. The results showed that the proposed data-mining framework outperformed the heuristic rules from the knowledge-based expert system model. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2015.2492982 |