Loading…
Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks
We consider small-cell networks with multiple-antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service...
Saved in:
Published in: | IEEE transactions on communications 2016-02, Vol.64 (2), p.790-804 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3 |
container_end_page | 804 |
container_issue | 2 |
container_start_page | 790 |
container_title | IEEE transactions on communications |
container_volume | 64 |
creator | Vu, Quang-Doanh Tran, Le-Nam Farrell, Ronan Hong, Een-Kee |
description | We consider small-cell networks with multiple-antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service (QoS) requirements. Assuming zero-forcing precoding, we formulate the problem of interest as a concave-convex fractional program to which we proposed a centralized optimal solution based on the prevailing Dinkelbach algorithm. To facilitate distributed implementations, we transform the design problem into an equivalent convex program using Charnes-Cooper's transformation. Then, based on the framework of alternative direction method of multipliers (ADMM), we develop a decentralized algorithm, which is numerically shown to achieve fast convergence. Since BSs are generally power-hungry, it may be more energy-efficient if some BSs can be shut down, while still satisfying the QoS constraints. Toward this end, we investigate the problem of joint precoder design and BS selection, which is a mixed Boolean nonlinear program, and then provide an optimal solution by customizing the branch-and-bound method. For real-time applications, we propose a greedy algorithm which achieves near-optimal performance in polynomial time. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms. |
doi_str_mv | 10.1109/TCOMM.2015.2502941 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7335602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7335602</ieee_id><sourcerecordid>1816092450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EEqXwB2CJxMKScv6KnRGVFpAKRaIsLJbrXKqUNC52KtR_T0orBqa74b3T6RFySWFAKeS3s-H0-XnAgMoBk8ByQY9Ij0qpU9BSHZMeQA5pppQ-JWcxLgFAAOc9Mh41GBbbdFSWlauwaZMPDD4d--CqZpG8BnS-2G33GKtFk5Q-JG8rW9fpEOs6ecH224fPeE5OSltHvDjMPnkfj2bDx3QyfXga3k1SxxVrUwFUKMshF4UrncgzZ9FZCiW3woLLEAQKURaYu0zbTCthiznjUs6V7lzH--Rmf3cd_NcGY2tWVXTdJ7ZBv4mGappBzoSEDr3-hy79JjTdd4YqrRjTlNOOYnvKBR9jwNKsQ7WyYWsomF1a85vW7NKaQ9pOutpLFSL-CYpzmQHjP6HKc80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787228131</pqid></control><display><type>article</type><title>Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vu, Quang-Doanh ; Tran, Le-Nam ; Farrell, Ronan ; Hong, Een-Kee</creator><creatorcontrib>Vu, Quang-Doanh ; Tran, Le-Nam ; Farrell, Ronan ; Hong, Een-Kee</creatorcontrib><description>We consider small-cell networks with multiple-antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service (QoS) requirements. Assuming zero-forcing precoding, we formulate the problem of interest as a concave-convex fractional program to which we proposed a centralized optimal solution based on the prevailing Dinkelbach algorithm. To facilitate distributed implementations, we transform the design problem into an equivalent convex program using Charnes-Cooper's transformation. Then, based on the framework of alternative direction method of multipliers (ADMM), we develop a decentralized algorithm, which is numerically shown to achieve fast convergence. Since BSs are generally power-hungry, it may be more energy-efficient if some BSs can be shut down, while still satisfying the QoS constraints. Toward this end, we investigate the problem of joint precoder design and BS selection, which is a mixed Boolean nonlinear program, and then provide an optimal solution by customizing the branch-and-bound method. For real-time applications, we propose a greedy algorithm which achieves near-optimal performance in polynomial time. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2015.2502941</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ADMM ; Algorithm design and analysis ; Algorithms ; Antennas ; branch-and-bound ; Computing time ; energy efficiency ; Energy management ; joint design ; Mathematical model ; Mathematical models ; MIMO ; Networks ; Optimization ; Power demand ; Quality of service ; Quality of service architectures ; Small-cell networks ; Transformations ; Wireless communication</subject><ispartof>IEEE transactions on communications, 2016-02, Vol.64 (2), p.790-804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3</citedby><cites>FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7335602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Vu, Quang-Doanh</creatorcontrib><creatorcontrib>Tran, Le-Nam</creatorcontrib><creatorcontrib>Farrell, Ronan</creatorcontrib><creatorcontrib>Hong, Een-Kee</creatorcontrib><title>Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We consider small-cell networks with multiple-antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service (QoS) requirements. Assuming zero-forcing precoding, we formulate the problem of interest as a concave-convex fractional program to which we proposed a centralized optimal solution based on the prevailing Dinkelbach algorithm. To facilitate distributed implementations, we transform the design problem into an equivalent convex program using Charnes-Cooper's transformation. Then, based on the framework of alternative direction method of multipliers (ADMM), we develop a decentralized algorithm, which is numerically shown to achieve fast convergence. Since BSs are generally power-hungry, it may be more energy-efficient if some BSs can be shut down, while still satisfying the QoS constraints. Toward this end, we investigate the problem of joint precoder design and BS selection, which is a mixed Boolean nonlinear program, and then provide an optimal solution by customizing the branch-and-bound method. For real-time applications, we propose a greedy algorithm which achieves near-optimal performance in polynomial time. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.</description><subject>ADMM</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Antennas</subject><subject>branch-and-bound</subject><subject>Computing time</subject><subject>energy efficiency</subject><subject>Energy management</subject><subject>joint design</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>Networks</subject><subject>Optimization</subject><subject>Power demand</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Small-cell networks</subject><subject>Transformations</subject><subject>Wireless communication</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQQC0EEqXwB2CJxMKScv6KnRGVFpAKRaIsLJbrXKqUNC52KtR_T0orBqa74b3T6RFySWFAKeS3s-H0-XnAgMoBk8ByQY9Ij0qpU9BSHZMeQA5pppQ-JWcxLgFAAOc9Mh41GBbbdFSWlauwaZMPDD4d--CqZpG8BnS-2G33GKtFk5Q-JG8rW9fpEOs6ecH224fPeE5OSltHvDjMPnkfj2bDx3QyfXga3k1SxxVrUwFUKMshF4UrncgzZ9FZCiW3woLLEAQKURaYu0zbTCthiznjUs6V7lzH--Rmf3cd_NcGY2tWVXTdJ7ZBv4mGappBzoSEDr3-hy79JjTdd4YqrRjTlNOOYnvKBR9jwNKsQ7WyYWsomF1a85vW7NKaQ9pOutpLFSL-CYpzmQHjP6HKc80</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Vu, Quang-Doanh</creator><creator>Tran, Le-Nam</creator><creator>Farrell, Ronan</creator><creator>Hong, Een-Kee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201602</creationdate><title>Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks</title><author>Vu, Quang-Doanh ; Tran, Le-Nam ; Farrell, Ronan ; Hong, Een-Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ADMM</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Antennas</topic><topic>branch-and-bound</topic><topic>Computing time</topic><topic>energy efficiency</topic><topic>Energy management</topic><topic>joint design</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>Networks</topic><topic>Optimization</topic><topic>Power demand</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Small-cell networks</topic><topic>Transformations</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Quang-Doanh</creatorcontrib><creatorcontrib>Tran, Le-Nam</creatorcontrib><creatorcontrib>Farrell, Ronan</creatorcontrib><creatorcontrib>Hong, Een-Kee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Quang-Doanh</au><au>Tran, Le-Nam</au><au>Farrell, Ronan</au><au>Hong, Een-Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2016-02</date><risdate>2016</risdate><volume>64</volume><issue>2</issue><spage>790</spage><epage>804</epage><pages>790-804</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We consider small-cell networks with multiple-antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service (QoS) requirements. Assuming zero-forcing precoding, we formulate the problem of interest as a concave-convex fractional program to which we proposed a centralized optimal solution based on the prevailing Dinkelbach algorithm. To facilitate distributed implementations, we transform the design problem into an equivalent convex program using Charnes-Cooper's transformation. Then, based on the framework of alternative direction method of multipliers (ADMM), we develop a decentralized algorithm, which is numerically shown to achieve fast convergence. Since BSs are generally power-hungry, it may be more energy-efficient if some BSs can be shut down, while still satisfying the QoS constraints. Toward this end, we investigate the problem of joint precoder design and BS selection, which is a mixed Boolean nonlinear program, and then provide an optimal solution by customizing the branch-and-bound method. For real-time applications, we propose a greedy algorithm which achieves near-optimal performance in polynomial time. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2015.2502941</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2016-02, Vol.64 (2), p.790-804 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_7335602 |
source | IEEE Electronic Library (IEL) Journals |
subjects | ADMM Algorithm design and analysis Algorithms Antennas branch-and-bound Computing time energy efficiency Energy management joint design Mathematical model Mathematical models MIMO Networks Optimization Power demand Quality of service Quality of service architectures Small-cell networks Transformations Wireless communication |
title | Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Zero-Forcing%20Precoding%20Design%20for%20Small-Cell%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Vu,%20Quang-Doanh&rft.date=2016-02&rft.volume=64&rft.issue=2&rft.spage=790&rft.epage=804&rft.pages=790-804&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2015.2502941&rft_dat=%3Cproquest_ieee_%3E1816092450%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-40147a3094dcfc496caeca10f3a4a0c6e04e44fde9c68a6874adb2355b78401c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787228131&rft_id=info:pmid/&rft_ieee_id=7335602&rfr_iscdi=true |