Loading…
Coupled Deep Autoencoder for Single Image Super-Resolution
Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringi...
Saved in:
Published in: | IEEE transactions on cybernetics 2017-01, Vol.47 (1), p.27-37 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE transactions on cybernetics |
container_volume | 47 |
creator | Zeng, Kun Yu, Jun Wang, Ruxin Li, Cuihua Tao, Dacheng |
description | Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets. |
doi_str_mv | 10.1109/TCYB.2015.2501373 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7339460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339460</ieee_id><sourcerecordid>1826642331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoTub-ABGk4MVLZ_KSpq23WX8NBoKbB08lbV9GR9fUpD3435uxuYO5JLx8vo_3PoRcMTpljKb3q-zrcQqURVOIKOMxPyEXwGQSAsTR6fEt4xGZOLeh_iS-lCbnZARSQiQEXJCHzAxdg1XwhNgFs6E32JamQhtoY4Nl3a4bDOZbtcZgOXRoww90phn62rSX5EyrxuHkcI_J58vzKnsLF--v82y2CEsu0j7EQkrUshKYFErHHBGqVEQaaMywwIIKnSrgFOJKCVSYCIwxAqBaK_BD8zG52_ftrPke0PX5tnYlNo1q0QwuZ4lfRwDnzKO3_9CNGWzrp_NURMF7S6Wn2J4qrXHOos47W2-V_ckZzXdu853bfOc2P7j1mZtD56HYYnVM_Jn0wPUeqBHx-O2TqZCU_wIZz3ut</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850210996</pqid></control><display><type>article</type><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</creator><creatorcontrib>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</creatorcontrib><description>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2501373</identifier><identifier>PMID: 26625442</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autoencoder ; Blurring ; deep learning ; Dictionaries ; Encoding ; Experimentation ; Feature extraction ; Image coding ; Image reconstruction ; Image resolution ; Machine learning ; Manifolds ; Neural networks ; Representations ; single image super-resolution (SR)</subject><ispartof>IEEE transactions on cybernetics, 2017-01, Vol.47 (1), p.27-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</citedby><cites>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26625442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</description><subject>Autoencoder</subject><subject>Blurring</subject><subject>deep learning</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Experimentation</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Neural networks</subject><subject>Representations</subject><subject>single image super-resolution (SR)</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4MoTub-ABGk4MVLZ_KSpq23WX8NBoKbB08lbV9GR9fUpD3435uxuYO5JLx8vo_3PoRcMTpljKb3q-zrcQqURVOIKOMxPyEXwGQSAsTR6fEt4xGZOLeh_iS-lCbnZARSQiQEXJCHzAxdg1XwhNgFs6E32JamQhtoY4Nl3a4bDOZbtcZgOXRoww90phn62rSX5EyrxuHkcI_J58vzKnsLF--v82y2CEsu0j7EQkrUshKYFErHHBGqVEQaaMywwIIKnSrgFOJKCVSYCIwxAqBaK_BD8zG52_ftrPke0PX5tnYlNo1q0QwuZ4lfRwDnzKO3_9CNGWzrp_NURMF7S6Wn2J4qrXHOos47W2-V_ckZzXdu853bfOc2P7j1mZtD56HYYnVM_Jn0wPUeqBHx-O2TqZCU_wIZz3ut</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zeng, Kun</creator><creator>Yu, Jun</creator><creator>Wang, Ruxin</creator><creator>Li, Cuihua</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><author>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoencoder</topic><topic>Blurring</topic><topic>deep learning</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Experimentation</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Neural networks</topic><topic>Representations</topic><topic>single image super-resolution (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Kun</au><au>Yu, Jun</au><au>Wang, Ruxin</au><au>Li, Cuihua</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Deep Autoencoder for Single Image Super-Resolution</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>47</volume><issue>1</issue><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26625442</pmid><doi>10.1109/TCYB.2015.2501373</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2017-01, Vol.47 (1), p.27-37 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_7339460 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Autoencoder Blurring deep learning Dictionaries Encoding Experimentation Feature extraction Image coding Image reconstruction Image resolution Machine learning Manifolds Neural networks Representations single image super-resolution (SR) |
title | Coupled Deep Autoencoder for Single Image Super-Resolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Deep%20Autoencoder%20for%20Single%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zeng,%20Kun&rft.date=2017-01-01&rft.volume=47&rft.issue=1&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2501373&rft_dat=%3Cproquest_ieee_%3E1826642331%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850210996&rft_id=info:pmid/26625442&rft_ieee_id=7339460&rfr_iscdi=true |