Loading…
Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition
My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to p...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-48ae7fa7cddccaa8101bb5a4071cb429685482b21d5917c1564c3f8ffa7a85d73 |
---|---|
cites | |
container_end_page | 753 |
container_issue | |
container_start_page | 748 |
container_title | |
container_volume | |
creator | Kim, Yelin |
description | My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data. |
doi_str_mv | 10.1109/ACII.2015.7344653 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7344653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7344653</ieee_id><sourcerecordid>1778046967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-48ae7fa7cddccaa8101bb5a4071cb429685482b21d5917c1564c3f8ffa7a85d73</originalsourceid><addsrcrecordid>eNotkDFPwzAUhA0SEqX0ByAWjywJfokdO2xVVaBSJZYyRy-O0xqSuNhJgX9PSvuWu-G7k94RcgcsBmD543yxWsUJAxHLlPNMpBfkBrjMxxNpfkkmCYgsUgBwTWYhfDDGIBdMKTEhn8uffeO87bY0uMFrE6ir6QG9xd66jtqO7oYWO1qaHR6s89jQCnt8ohv3jb4KFIfetSOsR1dZFx1sGEbItO6_wBvttp09-ltyVWMTzOysU_L-vNwsXqP128tqMV9HOhFZH3GFRtYodVVpjaiAQVkK5EyCLnmSZ0pwlZQJVCIHqcffuE5rVY8RVKKS6ZQ8nHr33n0NJvRFa4M2TYOdcUMoQErFeJZnR_T-hFpjTLH3tkX_W5xnTP8AOnhokQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1778046967</pqid></control><display><type>conference_proceeding</type><title>Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition</title><source>IEEE Xplore All Conference Series</source><creator>Kim, Yelin</creator><creatorcontrib>Kim, Yelin</creatorcontrib><description>My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data.</description><identifier>EISSN: 2156-8111</identifier><identifier>EISBN: 1479999539</identifier><identifier>EISBN: 9781479999538</identifier><identifier>DOI: 10.1109/ACII.2015.7344653</identifier><language>eng</language><publisher>IEEE</publisher><subject>affective computing ; Analytical models ; Audiovisual ; Automation ; Communities ; Computation ; Conferences ; emotion estimation ; Emotion recognition ; Emotions ; Human behavior ; human perception ; Motion segmentation ; multimodal ; Production ; Recognition ; Speech ; Speech recognition ; temporal ; variation ; Visualization</subject><ispartof>2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 2015, p.748-753</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-48ae7fa7cddccaa8101bb5a4071cb429685482b21d5917c1564c3f8ffa7a85d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7344653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7344653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yelin</creatorcontrib><title>Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition</title><title>2015 International Conference on Affective Computing and Intelligent Interaction (ACII)</title><addtitle>ACII</addtitle><description>My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data.</description><subject>affective computing</subject><subject>Analytical models</subject><subject>Audiovisual</subject><subject>Automation</subject><subject>Communities</subject><subject>Computation</subject><subject>Conferences</subject><subject>emotion estimation</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Human behavior</subject><subject>human perception</subject><subject>Motion segmentation</subject><subject>multimodal</subject><subject>Production</subject><subject>Recognition</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>temporal</subject><subject>variation</subject><subject>Visualization</subject><issn>2156-8111</issn><isbn>1479999539</isbn><isbn>9781479999538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkDFPwzAUhA0SEqX0ByAWjywJfokdO2xVVaBSJZYyRy-O0xqSuNhJgX9PSvuWu-G7k94RcgcsBmD543yxWsUJAxHLlPNMpBfkBrjMxxNpfkkmCYgsUgBwTWYhfDDGIBdMKTEhn8uffeO87bY0uMFrE6ir6QG9xd66jtqO7oYWO1qaHR6s89jQCnt8ohv3jb4KFIfetSOsR1dZFx1sGEbItO6_wBvttp09-ltyVWMTzOysU_L-vNwsXqP128tqMV9HOhFZH3GFRtYodVVpjaiAQVkK5EyCLnmSZ0pwlZQJVCIHqcffuE5rVY8RVKKS6ZQ8nHr33n0NJvRFa4M2TYOdcUMoQErFeJZnR_T-hFpjTLH3tkX_W5xnTP8AOnhokQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kim, Yelin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition</title><author>Kim, Yelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-48ae7fa7cddccaa8101bb5a4071cb429685482b21d5917c1564c3f8ffa7a85d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>affective computing</topic><topic>Analytical models</topic><topic>Audiovisual</topic><topic>Automation</topic><topic>Communities</topic><topic>Computation</topic><topic>Conferences</topic><topic>emotion estimation</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Human behavior</topic><topic>human perception</topic><topic>Motion segmentation</topic><topic>multimodal</topic><topic>Production</topic><topic>Recognition</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>temporal</topic><topic>variation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yelin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yelin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition</atitle><btitle>2015 International Conference on Affective Computing and Intelligent Interaction (ACII)</btitle><stitle>ACII</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>748</spage><epage>753</epage><pages>748-753</pages><eissn>2156-8111</eissn><eisbn>1479999539</eisbn><eisbn>9781479999538</eisbn><abstract>My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data.</abstract><pub>IEEE</pub><doi>10.1109/ACII.2015.7344653</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2156-8111 |
ispartof | 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 2015, p.748-753 |
issn | 2156-8111 |
language | eng |
recordid | cdi_ieee_primary_7344653 |
source | IEEE Xplore All Conference Series |
subjects | affective computing Analytical models Audiovisual Automation Communities Computation Conferences emotion estimation Emotion recognition Emotions Human behavior human perception Motion segmentation multimodal Production Recognition Speech Speech recognition temporal variation Visualization |
title | Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20sources%20of%20variation%20in%20human%20behavioral%20data:%20Towards%20automatic%20audio-visual%20emotion%20recognition&rft.btitle=2015%20International%20Conference%20on%20Affective%20Computing%20and%20Intelligent%20Interaction%20(ACII)&rft.au=Kim,%20Yelin&rft.date=2015-09-01&rft.spage=748&rft.epage=753&rft.pages=748-753&rft.eissn=2156-8111&rft_id=info:doi/10.1109/ACII.2015.7344653&rft.eisbn=1479999539&rft.eisbn_list=9781479999538&rft_dat=%3Cproquest_CHZPO%3E1778046967%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-48ae7fa7cddccaa8101bb5a4071cb429685482b21d5917c1564c3f8ffa7a85d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778046967&rft_id=info:pmid/&rft_ieee_id=7344653&rfr_iscdi=true |