Loading…

Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis

In this letter, we propose to apply message passing algorithms to decode standard convolutional codes and assess the resulting performance and the required complexity compared to conventional decoding algorithms for convolutional codes by concentrating on the Viterbi algorithm (VA). We show that, in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2016-02, Vol.20 (2), p.216-219
Main Authors: Mani, Hossein, Saeedi, Hamid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03
cites cdi_FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03
container_end_page 219
container_issue 2
container_start_page 216
container_title IEEE communications letters
container_volume 20
creator Mani, Hossein
Saeedi, Hamid
description In this letter, we propose to apply message passing algorithms to decode standard convolutional codes and assess the resulting performance and the required complexity compared to conventional decoding algorithms for convolutional codes by concentrating on the Viterbi algorithm (VA). We show that, in contrast to the VA for which the decoding complexity increases exponentially with m, the number of memory blocks for the proposed framework, such an increase, is only linear in m. This suggests that applying message passing algorithms can provide considerable savings in the required computational power if it can also exhibit a comparable bit-error-rate performance to that of the VA. In this letter, we show via simulations that this is in fact the case for convolutional codes.
doi_str_mv 10.1109/LCOMM.2015.2508459
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7355317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7355317</ieee_id><sourcerecordid>4047401741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFdjKxza6Up9SqXcCGjeU4TpUqjYsnRfTvcWnFZl6692p0CLlmdMQYVXfTyXw2G3HKYMSByhzUCRkwAJnyWE7jTKVKhVDynFwgriilkgMbkM-ZQzRLlywMYtMt0weDrkoenfVVXBNfJxPffft22ze-M23cKof3ycKF2oe16axLTFfF83rTup-m3yXjKNthg5fkrDYtuqtjH5KP56f3yWs6nb-8TcbT1HIFfWqZAFUClELltC6FkCI3tLK5KUCyQjGrioIzaqF0gtMyz62scqV4JWqwlmZDcnvI3QT_tXXY65XfhvgEahbDOAMJLKr4QWWDRwyu1pvQrE3YaUb1nqH-Y6j3DPWRYTTdHEyNc-7fIDKAjInsF26AbP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787215851</pqid></control><display><type>article</type><title>Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mani, Hossein ; Saeedi, Hamid</creator><creatorcontrib>Mani, Hossein ; Saeedi, Hamid</creatorcontrib><description><![CDATA[In this letter, we propose to apply message passing algorithms to decode standard convolutional codes and assess the resulting performance and the required complexity compared to conventional decoding algorithms for convolutional codes by concentrating on the Viterbi algorithm (VA). We show that, in contrast to the VA for which the decoding complexity increases exponentially with <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>, the number of memory blocks for the proposed framework, such an increase, is only linear in <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>. This suggests that applying message passing algorithms can provide considerable savings in the required computational power if it can also exhibit a comparable bit-error-rate performance to that of the VA. In this letter, we show via simulations that this is in fact the case for convolutional codes.]]></description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2015.2508459</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity theory ; Convolutional codes ; Generators ; Iterative decoding ; Maximum likelihood decoding</subject><ispartof>IEEE communications letters, 2016-02, Vol.20 (2), p.216-219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03</citedby><cites>FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7355317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Mani, Hossein</creatorcontrib><creatorcontrib>Saeedi, Hamid</creatorcontrib><title>Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description><![CDATA[In this letter, we propose to apply message passing algorithms to decode standard convolutional codes and assess the resulting performance and the required complexity compared to conventional decoding algorithms for convolutional codes by concentrating on the Viterbi algorithm (VA). We show that, in contrast to the VA for which the decoding complexity increases exponentially with <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>, the number of memory blocks for the proposed framework, such an increase, is only linear in <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>. This suggests that applying message passing algorithms can provide considerable savings in the required computational power if it can also exhibit a comparable bit-error-rate performance to that of the VA. In this letter, we show via simulations that this is in fact the case for convolutional codes.]]></description><subject>Complexity theory</subject><subject>Convolutional codes</subject><subject>Generators</subject><subject>Iterative decoding</subject><subject>Maximum likelihood decoding</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFdjKxza6Up9SqXcCGjeU4TpUqjYsnRfTvcWnFZl6692p0CLlmdMQYVXfTyXw2G3HKYMSByhzUCRkwAJnyWE7jTKVKhVDynFwgriilkgMbkM-ZQzRLlywMYtMt0weDrkoenfVVXBNfJxPffft22ze-M23cKof3ycKF2oe16axLTFfF83rTup-m3yXjKNthg5fkrDYtuqtjH5KP56f3yWs6nb-8TcbT1HIFfWqZAFUClELltC6FkCI3tLK5KUCyQjGrioIzaqF0gtMyz62scqV4JWqwlmZDcnvI3QT_tXXY65XfhvgEahbDOAMJLKr4QWWDRwyu1pvQrE3YaUb1nqH-Y6j3DPWRYTTdHEyNc-7fIDKAjInsF26AbP4</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Mani, Hossein</creator><creator>Saeedi, Hamid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201602</creationdate><title>Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis</title><author>Mani, Hossein ; Saeedi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complexity theory</topic><topic>Convolutional codes</topic><topic>Generators</topic><topic>Iterative decoding</topic><topic>Maximum likelihood decoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mani, Hossein</creatorcontrib><creatorcontrib>Saeedi, Hamid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mani, Hossein</au><au>Saeedi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2016-02</date><risdate>2016</risdate><volume>20</volume><issue>2</issue><spage>216</spage><epage>219</epage><pages>216-219</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract><![CDATA[In this letter, we propose to apply message passing algorithms to decode standard convolutional codes and assess the resulting performance and the required complexity compared to conventional decoding algorithms for convolutional codes by concentrating on the Viterbi algorithm (VA). We show that, in contrast to the VA for which the decoding complexity increases exponentially with <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>, the number of memory blocks for the proposed framework, such an increase, is only linear in <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula>. This suggests that applying message passing algorithms can provide considerable savings in the required computational power if it can also exhibit a comparable bit-error-rate performance to that of the VA. In this letter, we show via simulations that this is in fact the case for convolutional codes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2015.2508459</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-02, Vol.20 (2), p.216-219
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_7355317
source IEEE Electronic Library (IEL) Journals
subjects Complexity theory
Convolutional codes
Generators
Iterative decoding
Maximum likelihood decoding
title Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Message%20Passing-Based%20Decoding%20of%20Convolutional%20Codes:%20Performance%20and%20Complexity%20Analysis&rft.jtitle=IEEE%20communications%20letters&rft.au=Mani,%20Hossein&rft.date=2016-02&rft.volume=20&rft.issue=2&rft.spage=216&rft.epage=219&rft.pages=216-219&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2015.2508459&rft_dat=%3Cproquest_ieee_%3E4047401741%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-c1759b55b7940fb77874a0dc4a6581691c966210c5be720b44c8d4992d7f5cc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787215851&rft_id=info:pmid/&rft_ieee_id=7355317&rfr_iscdi=true