Loading…

A Method of Purchase Prediction Based on User Behavior Log

In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised lear...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Dancheng, Zhao, Guangming, Wang, Zhi, Ma, Wenjia, Liu, Ying
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1039
container_issue
container_start_page 1031
container_title
container_volume
creator Li, Dancheng
Zhao, Guangming
Wang, Zhi
Ma, Wenjia
Liu, Ying
description In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.
doi_str_mv 10.1109/ICDMW.2015.179
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7395781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7395781</ieee_id><sourcerecordid>1816009005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73</originalsourceid><addsrcrecordid>eNotjDtPwzAUhQ0SEqV0ZWHxyJJy_bhxzNYHj0qt6EDFGDnJDbXU1sVOkfj3RCrTOUffp8PYnYCxEGAfF7P56nMsQeBYGHvBboTOjSq0lXjJBlIZzPpqr9koJV-BRFDWohqwpwlfUbcNDQ8tX59ivXWJ-DpS4-vOhwOf9ruHB75JFPmUtu7Hh8iX4euWXbVul2j0n0O2eXn-mL1ly_fXxWyyzLyEosssoqk0Yg4CjDJGg8pbXYNUTa7RNFS1Cg1odLLtpVZa3TRIxuVQFeiMGrKH8-8xhu8Tpa7c-1TTbucOFE6pFIXIASwA9ur9WfVEVB6j37v4Wxpl0RRC_QEUylIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1816009005</pqid></control><display><type>conference_proceeding</type><title>A Method of Purchase Prediction Based on User Behavior Log</title><source>IEEE Xplore All Conference Series</source><creator>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</creator><creatorcontrib>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</creatorcontrib><description>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</description><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 1467384925</identifier><identifier>EISBN: 9781467384926</identifier><identifier>EISBN: 9781467384933</identifier><identifier>EISBN: 1467384933</identifier><identifier>DOI: 10.1109/ICDMW.2015.179</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boolean functions ; Business ; Competition ; Conferences ; Construction ; Data models ; feature engineering ; Feature extraction ; gradient boosting ; Learning ; Mathematical models ; Measurement ; Mobile communication ; model ensemble ; Predictive models ; Recommender systems ; Sampled data</subject><ispartof>2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.1031-1039</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7395781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7395781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dancheng</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ma, Wenjia</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><title>A Method of Purchase Prediction Based on User Behavior Log</title><title>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</title><addtitle>ICDMW</addtitle><description>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</description><subject>Boolean functions</subject><subject>Business</subject><subject>Competition</subject><subject>Conferences</subject><subject>Construction</subject><subject>Data models</subject><subject>feature engineering</subject><subject>Feature extraction</subject><subject>gradient boosting</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Mobile communication</subject><subject>model ensemble</subject><subject>Predictive models</subject><subject>Recommender systems</subject><subject>Sampled data</subject><issn>2375-9259</issn><isbn>1467384925</isbn><isbn>9781467384926</isbn><isbn>9781467384933</isbn><isbn>1467384933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjDtPwzAUhQ0SEqV0ZWHxyJJy_bhxzNYHj0qt6EDFGDnJDbXU1sVOkfj3RCrTOUffp8PYnYCxEGAfF7P56nMsQeBYGHvBboTOjSq0lXjJBlIZzPpqr9koJV-BRFDWohqwpwlfUbcNDQ8tX59ivXWJ-DpS4-vOhwOf9ruHB75JFPmUtu7Hh8iX4euWXbVul2j0n0O2eXn-mL1ly_fXxWyyzLyEosssoqk0Yg4CjDJGg8pbXYNUTa7RNFS1Cg1odLLtpVZa3TRIxuVQFeiMGrKH8-8xhu8Tpa7c-1TTbucOFE6pFIXIASwA9ur9WfVEVB6j37v4Wxpl0RRC_QEUylIg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Li, Dancheng</creator><creator>Zhao, Guangming</creator><creator>Wang, Zhi</creator><creator>Ma, Wenjia</creator><creator>Liu, Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>A Method of Purchase Prediction Based on User Behavior Log</title><author>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean functions</topic><topic>Business</topic><topic>Competition</topic><topic>Conferences</topic><topic>Construction</topic><topic>Data models</topic><topic>feature engineering</topic><topic>Feature extraction</topic><topic>gradient boosting</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Mobile communication</topic><topic>model ensemble</topic><topic>Predictive models</topic><topic>Recommender systems</topic><topic>Sampled data</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Dancheng</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ma, Wenjia</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dancheng</au><au>Zhao, Guangming</au><au>Wang, Zhi</au><au>Ma, Wenjia</au><au>Liu, Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Method of Purchase Prediction Based on User Behavior Log</atitle><btitle>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</btitle><stitle>ICDMW</stitle><date>2015-11-01</date><risdate>2015</risdate><spage>1031</spage><epage>1039</epage><pages>1031-1039</pages><eissn>2375-9259</eissn><eisbn>1467384925</eisbn><eisbn>9781467384926</eisbn><eisbn>9781467384933</eisbn><eisbn>1467384933</eisbn><coden>IEEPAD</coden><abstract>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2015.179</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-9259
ispartof 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.1031-1039
issn 2375-9259
language eng
recordid cdi_ieee_primary_7395781
source IEEE Xplore All Conference Series
subjects Boolean functions
Business
Competition
Conferences
Construction
Data models
feature engineering
Feature extraction
gradient boosting
Learning
Mathematical models
Measurement
Mobile communication
model ensemble
Predictive models
Recommender systems
Sampled data
title A Method of Purchase Prediction Based on User Behavior Log
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Method%20of%20Purchase%20Prediction%20Based%20on%20User%20Behavior%20Log&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshop%20(ICDMW)&rft.au=Li,%20Dancheng&rft.date=2015-11-01&rft.spage=1031&rft.epage=1039&rft.pages=1031-1039&rft.eissn=2375-9259&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDMW.2015.179&rft.eisbn=1467384925&rft.eisbn_list=9781467384926&rft.eisbn_list=9781467384933&rft.eisbn_list=1467384933&rft_dat=%3Cproquest_CHZPO%3E1816009005%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816009005&rft_id=info:pmid/&rft_ieee_id=7395781&rfr_iscdi=true