Loading…
A Method of Purchase Prediction Based on User Behavior Log
In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised lear...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1039 |
container_issue | |
container_start_page | 1031 |
container_title | |
container_volume | |
creator | Li, Dancheng Zhao, Guangming Wang, Zhi Ma, Wenjia Liu, Ying |
description | In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition. |
doi_str_mv | 10.1109/ICDMW.2015.179 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7395781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7395781</ieee_id><sourcerecordid>1816009005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73</originalsourceid><addsrcrecordid>eNotjDtPwzAUhQ0SEqV0ZWHxyJJy_bhxzNYHj0qt6EDFGDnJDbXU1sVOkfj3RCrTOUffp8PYnYCxEGAfF7P56nMsQeBYGHvBboTOjSq0lXjJBlIZzPpqr9koJV-BRFDWohqwpwlfUbcNDQ8tX59ivXWJ-DpS4-vOhwOf9ruHB75JFPmUtu7Hh8iX4euWXbVul2j0n0O2eXn-mL1ly_fXxWyyzLyEosssoqk0Yg4CjDJGg8pbXYNUTa7RNFS1Cg1odLLtpVZa3TRIxuVQFeiMGrKH8-8xhu8Tpa7c-1TTbucOFE6pFIXIASwA9ur9WfVEVB6j37v4Wxpl0RRC_QEUylIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1816009005</pqid></control><display><type>conference_proceeding</type><title>A Method of Purchase Prediction Based on User Behavior Log</title><source>IEEE Xplore All Conference Series</source><creator>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</creator><creatorcontrib>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</creatorcontrib><description>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</description><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 1467384925</identifier><identifier>EISBN: 9781467384926</identifier><identifier>EISBN: 9781467384933</identifier><identifier>EISBN: 1467384933</identifier><identifier>DOI: 10.1109/ICDMW.2015.179</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boolean functions ; Business ; Competition ; Conferences ; Construction ; Data models ; feature engineering ; Feature extraction ; gradient boosting ; Learning ; Mathematical models ; Measurement ; Mobile communication ; model ensemble ; Predictive models ; Recommender systems ; Sampled data</subject><ispartof>2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.1031-1039</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7395781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7395781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dancheng</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ma, Wenjia</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><title>A Method of Purchase Prediction Based on User Behavior Log</title><title>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</title><addtitle>ICDMW</addtitle><description>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</description><subject>Boolean functions</subject><subject>Business</subject><subject>Competition</subject><subject>Conferences</subject><subject>Construction</subject><subject>Data models</subject><subject>feature engineering</subject><subject>Feature extraction</subject><subject>gradient boosting</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Mobile communication</subject><subject>model ensemble</subject><subject>Predictive models</subject><subject>Recommender systems</subject><subject>Sampled data</subject><issn>2375-9259</issn><isbn>1467384925</isbn><isbn>9781467384926</isbn><isbn>9781467384933</isbn><isbn>1467384933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjDtPwzAUhQ0SEqV0ZWHxyJJy_bhxzNYHj0qt6EDFGDnJDbXU1sVOkfj3RCrTOUffp8PYnYCxEGAfF7P56nMsQeBYGHvBboTOjSq0lXjJBlIZzPpqr9koJV-BRFDWohqwpwlfUbcNDQ8tX59ivXWJ-DpS4-vOhwOf9ruHB75JFPmUtu7Hh8iX4euWXbVul2j0n0O2eXn-mL1ly_fXxWyyzLyEosssoqk0Yg4CjDJGg8pbXYNUTa7RNFS1Cg1odLLtpVZa3TRIxuVQFeiMGrKH8-8xhu8Tpa7c-1TTbucOFE6pFIXIASwA9ur9WfVEVB6j37v4Wxpl0RRC_QEUylIg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Li, Dancheng</creator><creator>Zhao, Guangming</creator><creator>Wang, Zhi</creator><creator>Ma, Wenjia</creator><creator>Liu, Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>A Method of Purchase Prediction Based on User Behavior Log</title><author>Li, Dancheng ; Zhao, Guangming ; Wang, Zhi ; Ma, Wenjia ; Liu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean functions</topic><topic>Business</topic><topic>Competition</topic><topic>Conferences</topic><topic>Construction</topic><topic>Data models</topic><topic>feature engineering</topic><topic>Feature extraction</topic><topic>gradient boosting</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Mobile communication</topic><topic>model ensemble</topic><topic>Predictive models</topic><topic>Recommender systems</topic><topic>Sampled data</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Dancheng</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ma, Wenjia</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dancheng</au><au>Zhao, Guangming</au><au>Wang, Zhi</au><au>Ma, Wenjia</au><au>Liu, Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Method of Purchase Prediction Based on User Behavior Log</atitle><btitle>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</btitle><stitle>ICDMW</stitle><date>2015-11-01</date><risdate>2015</risdate><spage>1031</spage><epage>1039</epage><pages>1031-1039</pages><eissn>2375-9259</eissn><eisbn>1467384925</eisbn><eisbn>9781467384926</eisbn><eisbn>9781467384933</eisbn><eisbn>1467384933</eisbn><coden>IEEPAD</coden><abstract>In this paper, we propose a method to predict next-one-day-purchase behavior of "Online to Offline"(O2O) itemsbased on huge scale of user behavior log. The overall solution isdescribed in 2 parts: the feature engineering of the user behaviorlog and the ensemble of different supervised learning models. Inthe feature engineering section, besides the basic features, wefurther analyze the behavior of mobile users and propose somespecial features in O2O scenarios. Those scenarios includes thegroup-based rank, the transition rate, the centralized proportion, re-buy patterns, geohash-related features and etc. which haveimproved the model a lot in practice. Besides, group-based rankcould be easily extended to other similar business scenarios. Next, model ensemble are tuned in 2 ways: 1) blended models that aretrained randomly sampled data to enrich the diversity of thetraining data to boost the performance, 2) training individualmodel for different patterns of user-item pair, like the next-daypurchaseprediction, re-buy patterns and etc. Finally, a blendedof the above models are used to build the prediction result. Toevaluate the proposed method, we use the data provided byAli Mobile Recommendation Competition held in 2015 whichconsisted of the behavior logs of items from mobile users in onemonth from Nov. 18, 2014 to Dec.18, 2014, and predict purchasebehavior of O2O items in Dec.19, 2014. The result is evaluatedunder F1 prediction score metric and it achieve a good scoreas 8.64% that ranks 4th over more than 7,000 teams in the competition.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2015.179</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-9259 |
ispartof | 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.1031-1039 |
issn | 2375-9259 |
language | eng |
recordid | cdi_ieee_primary_7395781 |
source | IEEE Xplore All Conference Series |
subjects | Boolean functions Business Competition Conferences Construction Data models feature engineering Feature extraction gradient boosting Learning Mathematical models Measurement Mobile communication model ensemble Predictive models Recommender systems Sampled data |
title | A Method of Purchase Prediction Based on User Behavior Log |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Method%20of%20Purchase%20Prediction%20Based%20on%20User%20Behavior%20Log&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshop%20(ICDMW)&rft.au=Li,%20Dancheng&rft.date=2015-11-01&rft.spage=1031&rft.epage=1039&rft.pages=1031-1039&rft.eissn=2375-9259&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDMW.2015.179&rft.eisbn=1467384925&rft.eisbn_list=9781467384926&rft.eisbn_list=9781467384933&rft.eisbn_list=1467384933&rft_dat=%3Cproquest_CHZPO%3E1816009005%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-9557b455601073774036f4c023d6457debf357045a2f560f294dd5e7a60b85a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816009005&rft_id=info:pmid/&rft_ieee_id=7395781&rfr_iscdi=true |