Loading…

An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness

Line-edge roughness induced fin-edge roughness (FER) is the primary source of V T variation in FinFETs. Conventionally, stochastic simulations are performed to predict the device variability due to FER for a technology, which are computationally expensive. An analytical formulation to predict variab...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2016-03, Vol.63 (3), p.1352-1358
Main Authors: Mittal, S., Shekhawat, A. S., Ganguly, U.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1358
container_issue 3
container_start_page 1352
container_title IEEE transactions on electron devices
container_volume 63
creator Mittal, S.
Shekhawat, A. S.
Ganguly, U.
description Line-edge roughness induced fin-edge roughness (FER) is the primary source of V T variation in FinFETs. Conventionally, stochastic simulations are performed to predict the device variability due to FER for a technology, which are computationally expensive. An analytical formulation to predict variability due to FER enables understanding of the effect of input parameters as well as provides quantitative results at fractional computational costs. In this paper, we develop and present an analytical model to estimate saturation V T (V T -sat) variability due to FER. The model is capable of capturing the V T variability dependence on device parameters (L G and W fin ) and variability parameters (correlation length Λ and standard deviation Δ) accurately. The entire VT-sat distribution obtained by the model is also presented and compared against the VT-sat distribution of stochastic simulations to show that the model captures the distribution effectively. We show that not only σ V T but even μV T is affected by variability parameters. Hence, such modeling is critical to defining nominal FinFET structure (LG and Wfin), which is affected by variability (Λ and Δ) especially for scaled FinFETs, where quantum-confinement effects are enhanced.
doi_str_mv 10.1109/TED.2016.2520954
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7401031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7401031</ieee_id><sourcerecordid>1816031189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i539-b0ed9fec115d3520c8b8b32373d31952f1a76784bc1872a97d1c377c2f5123533</originalsourceid><addsrcrecordid>eNotj8FLwzAYxYMoOKd3wUtueunMl69pkmPZOhUmogyvJU3TGena2aSH_fdW5unxeD8e7xFyC2wBwPTjtlgtOINswQVnWqRnZAZCyERnaXZOZoyBSjQqvCRXIXxPNktTPiPveUfzzrTH6K1p6Wtfu5bGnhYh-r2Jjq59ty6294F-0pUPcfDVGH3f0dXo_rgpTop65-hHP-6-OhfCNbloTBvczb_OyXYqWD4nm7enl2W-SbxAnVTM1bpxFkDUOC22qlIVcpRYI2jBGzAykyqtLCjJjZY1WJTS8kYAR4E4Jw-n2sPQ_4wuxHLvg3VtazrXj6EEBRlDAKUn9O6EeudceRimY8OxlCmDCcBf8MJZVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816031189</pqid></control><display><type>article</type><title>An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mittal, S. ; Shekhawat, A. S. ; Ganguly, U.</creator><creatorcontrib>Mittal, S. ; Shekhawat, A. S. ; Ganguly, U.</creatorcontrib><description>Line-edge roughness induced fin-edge roughness (FER) is the primary source of V T variation in FinFETs. Conventionally, stochastic simulations are performed to predict the device variability due to FER for a technology, which are computationally expensive. An analytical formulation to predict variability due to FER enables understanding of the effect of input parameters as well as provides quantitative results at fractional computational costs. In this paper, we develop and present an analytical model to estimate saturation V T (V T -sat) variability due to FER. The model is capable of capturing the V T variability dependence on device parameters (L G and W fin ) and variability parameters (correlation length Λ and standard deviation Δ) accurately. The entire VT-sat distribution obtained by the model is also presented and compared against the VT-sat distribution of stochastic simulations to show that the model captures the distribution effectively. We show that not only σ V T but even μV T is affected by variability parameters. Hence, such modeling is critical to defining nominal FinFET structure (LG and Wfin), which is affected by variability (Λ and Δ) especially for scaled FinFETs, where quantum-confinement effects are enhanced.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2520954</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational efficiency ; Computational modeling ; Computer simulation ; Correlation ; Devices ; Estimates ; Fin-edge roughness (FER) ; FinFET ; FinFETs ; Force ; line-edge roughness (LER) ; Mathematical analysis ; Mathematical model ; Mathematical models ; modeling ; Roughness ; Stochastic processes ; Stochasticity ; VT variability</subject><ispartof>IEEE transactions on electron devices, 2016-03, Vol.63 (3), p.1352-1358</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7401031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Mittal, S.</creatorcontrib><creatorcontrib>Shekhawat, A. S.</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><title>An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Line-edge roughness induced fin-edge roughness (FER) is the primary source of V T variation in FinFETs. Conventionally, stochastic simulations are performed to predict the device variability due to FER for a technology, which are computationally expensive. An analytical formulation to predict variability due to FER enables understanding of the effect of input parameters as well as provides quantitative results at fractional computational costs. In this paper, we develop and present an analytical model to estimate saturation V T (V T -sat) variability due to FER. The model is capable of capturing the V T variability dependence on device parameters (L G and W fin ) and variability parameters (correlation length Λ and standard deviation Δ) accurately. The entire VT-sat distribution obtained by the model is also presented and compared against the VT-sat distribution of stochastic simulations to show that the model captures the distribution effectively. We show that not only σ V T but even μV T is affected by variability parameters. Hence, such modeling is critical to defining nominal FinFET structure (LG and Wfin), which is affected by variability (Λ and Δ) especially for scaled FinFETs, where quantum-confinement effects are enhanced.</description><subject>Analytical models</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Devices</subject><subject>Estimates</subject><subject>Fin-edge roughness (FER)</subject><subject>FinFET</subject><subject>FinFETs</subject><subject>Force</subject><subject>line-edge roughness (LER)</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Roughness</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>VT variability</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotj8FLwzAYxYMoOKd3wUtueunMl69pkmPZOhUmogyvJU3TGena2aSH_fdW5unxeD8e7xFyC2wBwPTjtlgtOINswQVnWqRnZAZCyERnaXZOZoyBSjQqvCRXIXxPNktTPiPveUfzzrTH6K1p6Wtfu5bGnhYh-r2Jjq59ty6294F-0pUPcfDVGH3f0dXo_rgpTop65-hHP-6-OhfCNbloTBvczb_OyXYqWD4nm7enl2W-SbxAnVTM1bpxFkDUOC22qlIVcpRYI2jBGzAykyqtLCjJjZY1WJTS8kYAR4E4Jw-n2sPQ_4wuxHLvg3VtazrXj6EEBRlDAKUn9O6EeudceRimY8OxlCmDCcBf8MJZVg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Mittal, S.</creator><creator>Shekhawat, A. S.</creator><creator>Ganguly, U.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness</title><author>Mittal, S. ; Shekhawat, A. S. ; Ganguly, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i539-b0ed9fec115d3520c8b8b32373d31952f1a76784bc1872a97d1c377c2f5123533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical models</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Devices</topic><topic>Estimates</topic><topic>Fin-edge roughness (FER)</topic><topic>FinFET</topic><topic>FinFETs</topic><topic>Force</topic><topic>line-edge roughness (LER)</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Roughness</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>VT variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mittal, S.</creatorcontrib><creatorcontrib>Shekhawat, A. S.</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mittal, S.</au><au>Shekhawat, A. S.</au><au>Ganguly, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-03</date><risdate>2016</risdate><volume>63</volume><issue>3</issue><spage>1352</spage><epage>1358</epage><pages>1352-1358</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Line-edge roughness induced fin-edge roughness (FER) is the primary source of V T variation in FinFETs. Conventionally, stochastic simulations are performed to predict the device variability due to FER for a technology, which are computationally expensive. An analytical formulation to predict variability due to FER enables understanding of the effect of input parameters as well as provides quantitative results at fractional computational costs. In this paper, we develop and present an analytical model to estimate saturation V T (V T -sat) variability due to FER. The model is capable of capturing the V T variability dependence on device parameters (L G and W fin ) and variability parameters (correlation length Λ and standard deviation Δ) accurately. The entire VT-sat distribution obtained by the model is also presented and compared against the VT-sat distribution of stochastic simulations to show that the model captures the distribution effectively. We show that not only σ V T but even μV T is affected by variability parameters. Hence, such modeling is critical to defining nominal FinFET structure (LG and Wfin), which is affected by variability (Λ and Δ) especially for scaled FinFETs, where quantum-confinement effects are enhanced.</abstract><pub>IEEE</pub><doi>10.1109/TED.2016.2520954</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2016-03, Vol.63 (3), p.1352-1358
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_7401031
source IEEE Electronic Library (IEL) Journals
subjects Analytical models
Computational efficiency
Computational modeling
Computer simulation
Correlation
Devices
Estimates
Fin-edge roughness (FER)
FinFET
FinFETs
Force
line-edge roughness (LER)
Mathematical analysis
Mathematical model
Mathematical models
modeling
Roughness
Stochastic processes
Stochasticity
VT variability
title An Analytical Model to Estimate FinFET's V Distribution Due to Fin-Edge Roughness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Model%20to%20Estimate%20FinFET's%20V%20Distribution%20Due%20to%20Fin-Edge%20Roughness&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mittal,%20S.&rft.date=2016-03&rft.volume=63&rft.issue=3&rft.spage=1352&rft.epage=1358&rft.pages=1352-1358&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2520954&rft_dat=%3Cproquest_ieee_%3E1816031189%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i539-b0ed9fec115d3520c8b8b32373d31952f1a76784bc1872a97d1c377c2f5123533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816031189&rft_id=info:pmid/&rft_ieee_id=7401031&rfr_iscdi=true