Loading…

Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector

We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performanc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2016-04, Vol.13 (4), p.485-489
Main Authors: Theiler, James, Grosklos, Guen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3
cites cdi_FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3
container_end_page 489
container_issue 4
container_start_page 485
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Theiler, James
Grosklos, Guen
description We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. We show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a wide range of bandwidths.
doi_str_mv 10.1109/LGRS.2016.2516985
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7426793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7426793</ieee_id><sourcerecordid>4046245741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3</originalsourceid><addsrcrecordid>eNpdkctOwzAQRSMEEqXwAYiNBRs2KR47tpNlVZ6iEqgFiZ3lOBM1VRIXO13A1-OqiAWruRqdOw_dJDkHOgGgxc38YbGcMApywgTIIhcHyQiEyFMqFBzudCZSUeQfx8lJCGtKWZbnapQsXr0rW-zM0FgS9Rrt0LieDI4MKyRPfbo03aZFstyWYWMsktp5Ysgz-h7b5hsrMu1dZ9ovcotDNDt_mhzVpg149lvHyfv93dvsMZ2_PDzNpvPUcsGHlKOUoGpExbk0QAVkqiwr5LYqSyMzgbJihZG2YFKgEmisrWILmM2kkTUfJ5f7uS4MjQ62ietX1vV9vEIDy5SURYSu99DGu88thkF3TbDYtqZHtw0acpCUSyiyiF79Q9du6_v4ggaVK8pyARAp2FPWuxA81nrjm874Lw1U76LQuyj0Lgr9G0X0XOw9DSL-8SpjUhWc_wCcNoQ_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787028511</pqid></control><display><type>article</type><title>Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Theiler, James ; Grosklos, Guen</creator><creatorcontrib>Theiler, James ; Grosklos, Guen ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. We show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a wide range of bandwidths.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2516985</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive signal detection ; Algorithms ; Anomalies ; Anomaly detection ; Bandwidth ; Covariance matrices ; data models ; Detectors ; Gaussian ; Gaussian distribution ; GEOSCIENCES ; Hyperspectral imaging ; kernel density estimation ; kernel-RX ; Kernels ; mahalanobis distance ; MATHEMATICS AND COMPUTING ; multidimensional signal processing ; pattern recognition ; Projection ; Remote sensing ; singular value decomposition ; spectral analysis ; Unsupervised learning</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.485-489</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3</citedby><cites>FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7426793$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1247669$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Theiler, James</creatorcontrib><creatorcontrib>Grosklos, Guen</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. We show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a wide range of bandwidths.</description><subject>Adaptive signal detection</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Bandwidth</subject><subject>Covariance matrices</subject><subject>data models</subject><subject>Detectors</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>GEOSCIENCES</subject><subject>Hyperspectral imaging</subject><subject>kernel density estimation</subject><subject>kernel-RX</subject><subject>Kernels</subject><subject>mahalanobis distance</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>multidimensional signal processing</subject><subject>pattern recognition</subject><subject>Projection</subject><subject>Remote sensing</subject><subject>singular value decomposition</subject><subject>spectral analysis</subject><subject>Unsupervised learning</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkctOwzAQRSMEEqXwAYiNBRs2KR47tpNlVZ6iEqgFiZ3lOBM1VRIXO13A1-OqiAWruRqdOw_dJDkHOgGgxc38YbGcMApywgTIIhcHyQiEyFMqFBzudCZSUeQfx8lJCGtKWZbnapQsXr0rW-zM0FgS9Rrt0LieDI4MKyRPfbo03aZFstyWYWMsktp5Ysgz-h7b5hsrMu1dZ9ovcotDNDt_mhzVpg149lvHyfv93dvsMZ2_PDzNpvPUcsGHlKOUoGpExbk0QAVkqiwr5LYqSyMzgbJihZG2YFKgEmisrWILmM2kkTUfJ5f7uS4MjQ62ietX1vV9vEIDy5SURYSu99DGu88thkF3TbDYtqZHtw0acpCUSyiyiF79Q9du6_v4ggaVK8pyARAp2FPWuxA81nrjm874Lw1U76LQuyj0Lgr9G0X0XOw9DSL-8SpjUhWc_wCcNoQ_</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Theiler, James</creator><creator>Grosklos, Guen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160401</creationdate><title>Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector</title><author>Theiler, James ; Grosklos, Guen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive signal detection</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Bandwidth</topic><topic>Covariance matrices</topic><topic>data models</topic><topic>Detectors</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>GEOSCIENCES</topic><topic>Hyperspectral imaging</topic><topic>kernel density estimation</topic><topic>kernel-RX</topic><topic>Kernels</topic><topic>mahalanobis distance</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>multidimensional signal processing</topic><topic>pattern recognition</topic><topic>Projection</topic><topic>Remote sensing</topic><topic>singular value decomposition</topic><topic>spectral analysis</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theiler, James</creatorcontrib><creatorcontrib>Grosklos, Guen</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theiler, James</au><au>Grosklos, Guen</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>485</spage><epage>489</epage><pages>485-489</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. We show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a wide range of bandwidths.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2516985</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.485-489
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_7426793
source IEEE Electronic Library (IEL) Journals
subjects Adaptive signal detection
Algorithms
Anomalies
Anomaly detection
Bandwidth
Covariance matrices
data models
Detectors
Gaussian
Gaussian distribution
GEOSCIENCES
Hyperspectral imaging
kernel density estimation
kernel-RX
Kernels
mahalanobis distance
MATHEMATICS AND COMPUTING
multidimensional signal processing
pattern recognition
Projection
Remote sensing
singular value decomposition
spectral analysis
Unsupervised learning
title Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Problematic%20Projection%20to%20the%20In-Sample%20Subspace%20for%20a%20Kernelized%20Anomaly%20Detector&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Theiler,%20James&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2016-04-01&rft.volume=13&rft.issue=4&rft.spage=485&rft.epage=489&rft.pages=485-489&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2516985&rft_dat=%3Cproquest_ieee_%3E4046245741%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3e6617fee7336a105147bbde3cdbba645e6d29a6c9265e75eaccd6d212c46a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787028511&rft_id=info:pmid/&rft_ieee_id=7426793&rfr_iscdi=true