Loading…

Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature

In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2016-08, Vol.9 (8), p.3512-3523
Main Authors: De Bernardis, Caleb, Vicente-Guijalba, Fernando, Martinez-Marin, Tomas, Lopez-Sanchez, Juan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3
cites cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3
container_end_page 3523
container_issue 8
container_start_page 3512
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 9
creator De Bernardis, Caleb
Vicente-Guijalba, Fernando
Martinez-Marin, Tomas
Lopez-Sanchez, Juan M.
description In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
doi_str_mv 10.1109/JSTARS.2016.2539498
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7447708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7447708</ieee_id><sourcerecordid>1837321730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EUpfCE_RiiQuXbO3YjmNuy263FFWANks5RpNkQl2SeLEdoT4Kb0uyW3Hgwmmk0ff90sxPyAVnS86ZufxY7Fe7Ypkyni1TJYw0-TOySLniCVdCPScLboRJuGTyjLwM4YGxLNVGLMjvtRuit9UYrRtodHSH0CV72yO9CtH2cNy7lq69O9Av9zi4zn23NXS0iBAxUDtQoJvHAfrjduuhx1_O_6DvIWBDJ_vT5u6GHiML9BbDO7qBCHQ7hjn7m433tFjtKAwN3WN_QA9x9PiKvGihC_j6aZ6Tr9ur_fpDcvv5-ma9uk1qyfKYVI2SDWILVQ7TrSbXugLFdVVlGlpWKSPbrG5qLbFlAvKKtbWQnGdKMGNYJc7J21PuwbufI4ZY9jbU2HUwoBtDyXOlRKbVJPwfFVqkXAs2oW_-QR_c6IfpkJliucmZnClxomrvQvDYlgc__dw_lpyVc7PlqdlybrZ8anayLk6WRcS_hpZSa5aLPy6-n8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830898040</pqid></control><display><type>article</type><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><source>Alma/SFX Local Collection</source><creator>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</creator><creatorcontrib>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</creatorcontrib><description>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2539498</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Algorithms ; Data fusion ; Data integration ; Dynamical systems ; Estimating ; Estimation ; Mathematical model ; normalized difference vegetation index (NDVI) ; particle filter (PF) ; phenology ; Predictive models ; Real time ; Remote sensing ; Satellite imagery ; state space ; synthetic aperture radar (SAR) ; temperature ; Time series ; Time series analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-08, Vol.9 (8), p.3512-3523</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</citedby><cites>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</cites><orcidid>0000-0002-4216-5175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>De Bernardis, Caleb</creatorcontrib><creatorcontrib>Vicente-Guijalba, Fernando</creatorcontrib><creatorcontrib>Martinez-Marin, Tomas</creatorcontrib><creatorcontrib>Lopez-Sanchez, Juan M.</creatorcontrib><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Dynamical systems</subject><subject>Estimating</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>normalized difference vegetation index (NDVI)</subject><subject>particle filter (PF)</subject><subject>phenology</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>state space</subject><subject>synthetic aperture radar (SAR)</subject><subject>temperature</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EUpfCE_RiiQuXbO3YjmNuy263FFWANks5RpNkQl2SeLEdoT4Kb0uyW3Hgwmmk0ff90sxPyAVnS86ZufxY7Fe7Ypkyni1TJYw0-TOySLniCVdCPScLboRJuGTyjLwM4YGxLNVGLMjvtRuit9UYrRtodHSH0CV72yO9CtH2cNy7lq69O9Av9zi4zn23NXS0iBAxUDtQoJvHAfrjduuhx1_O_6DvIWBDJ_vT5u6GHiML9BbDO7qBCHQ7hjn7m433tFjtKAwN3WN_QA9x9PiKvGihC_j6aZ6Tr9ur_fpDcvv5-ma9uk1qyfKYVI2SDWILVQ7TrSbXugLFdVVlGlpWKSPbrG5qLbFlAvKKtbWQnGdKMGNYJc7J21PuwbufI4ZY9jbU2HUwoBtDyXOlRKbVJPwfFVqkXAs2oW_-QR_c6IfpkJliucmZnClxomrvQvDYlgc__dw_lpyVc7PlqdlybrZ8anayLk6WRcS_hpZSa5aLPy6-n8I</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>De Bernardis, Caleb</creator><creator>Vicente-Guijalba, Fernando</creator><creator>Martinez-Marin, Tomas</creator><creator>Lopez-Sanchez, Juan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4216-5175</orcidid></search><sort><creationdate>201608</creationdate><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><author>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Dynamical systems</topic><topic>Estimating</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>normalized difference vegetation index (NDVI)</topic><topic>particle filter (PF)</topic><topic>phenology</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>state space</topic><topic>synthetic aperture radar (SAR)</topic><topic>temperature</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bernardis, Caleb</creatorcontrib><creatorcontrib>Vicente-Guijalba, Fernando</creatorcontrib><creatorcontrib>Martinez-Marin, Tomas</creatorcontrib><creatorcontrib>Lopez-Sanchez, Juan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bernardis, Caleb</au><au>Vicente-Guijalba, Fernando</au><au>Martinez-Marin, Tomas</au><au>Lopez-Sanchez, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-08</date><risdate>2016</risdate><volume>9</volume><issue>8</issue><spage>3512</spage><epage>3523</epage><pages>3512-3523</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2539498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4216-5175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2016-08, Vol.9 (8), p.3512-3523
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_7447708
source Alma/SFX Local Collection
subjects Agriculture
Algorithms
Data fusion
Data integration
Dynamical systems
Estimating
Estimation
Mathematical model
normalized difference vegetation index (NDVI)
particle filter (PF)
phenology
Predictive models
Real time
Remote sensing
Satellite imagery
state space
synthetic aperture radar (SAR)
temperature
Time series
Time series analysis
title Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20to%20Real-Time%20Estimation%20of%20Crop%20Phenological%20States%20in%20a%20Dynamical%20Framework%20Based%20on%20NDVI%20Time%20Series:%20Data%20Fusion%20With%20SAR%20and%20Temperature&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=De%20Bernardis,%20Caleb&rft.date=2016-08&rft.volume=9&rft.issue=8&rft.spage=3512&rft.epage=3523&rft.pages=3512-3523&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2539498&rft_dat=%3Cproquest_ieee_%3E1837321730%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830898040&rft_id=info:pmid/&rft_ieee_id=7447708&rfr_iscdi=true