Loading…
Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2016-08, Vol.9 (8), p.3512-3523 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3 |
container_end_page | 3523 |
container_issue | 8 |
container_start_page | 3512 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 9 |
creator | De Bernardis, Caleb Vicente-Guijalba, Fernando Martinez-Marin, Tomas Lopez-Sanchez, Juan M. |
description | In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems. |
doi_str_mv | 10.1109/JSTARS.2016.2539498 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7447708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7447708</ieee_id><sourcerecordid>1837321730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EUpfCE_RiiQuXbO3YjmNuy263FFWANks5RpNkQl2SeLEdoT4Kb0uyW3Hgwmmk0ff90sxPyAVnS86ZufxY7Fe7Ypkyni1TJYw0-TOySLniCVdCPScLboRJuGTyjLwM4YGxLNVGLMjvtRuit9UYrRtodHSH0CV72yO9CtH2cNy7lq69O9Av9zi4zn23NXS0iBAxUDtQoJvHAfrjduuhx1_O_6DvIWBDJ_vT5u6GHiML9BbDO7qBCHQ7hjn7m433tFjtKAwN3WN_QA9x9PiKvGihC_j6aZ6Tr9ur_fpDcvv5-ma9uk1qyfKYVI2SDWILVQ7TrSbXugLFdVVlGlpWKSPbrG5qLbFlAvKKtbWQnGdKMGNYJc7J21PuwbufI4ZY9jbU2HUwoBtDyXOlRKbVJPwfFVqkXAs2oW_-QR_c6IfpkJliucmZnClxomrvQvDYlgc__dw_lpyVc7PlqdlybrZ8anayLk6WRcS_hpZSa5aLPy6-n8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830898040</pqid></control><display><type>article</type><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><source>Alma/SFX Local Collection</source><creator>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</creator><creatorcontrib>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</creatorcontrib><description>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2539498</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Algorithms ; Data fusion ; Data integration ; Dynamical systems ; Estimating ; Estimation ; Mathematical model ; normalized difference vegetation index (NDVI) ; particle filter (PF) ; phenology ; Predictive models ; Real time ; Remote sensing ; Satellite imagery ; state space ; synthetic aperture radar (SAR) ; temperature ; Time series ; Time series analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-08, Vol.9 (8), p.3512-3523</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</citedby><cites>FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</cites><orcidid>0000-0002-4216-5175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>De Bernardis, Caleb</creatorcontrib><creatorcontrib>Vicente-Guijalba, Fernando</creatorcontrib><creatorcontrib>Martinez-Marin, Tomas</creatorcontrib><creatorcontrib>Lopez-Sanchez, Juan M.</creatorcontrib><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Dynamical systems</subject><subject>Estimating</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>normalized difference vegetation index (NDVI)</subject><subject>particle filter (PF)</subject><subject>phenology</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>state space</subject><subject>synthetic aperture radar (SAR)</subject><subject>temperature</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EUpfCE_RiiQuXbO3YjmNuy263FFWANks5RpNkQl2SeLEdoT4Kb0uyW3Hgwmmk0ff90sxPyAVnS86ZufxY7Fe7Ypkyni1TJYw0-TOySLniCVdCPScLboRJuGTyjLwM4YGxLNVGLMjvtRuit9UYrRtodHSH0CV72yO9CtH2cNy7lq69O9Av9zi4zn23NXS0iBAxUDtQoJvHAfrjduuhx1_O_6DvIWBDJ_vT5u6GHiML9BbDO7qBCHQ7hjn7m433tFjtKAwN3WN_QA9x9PiKvGihC_j6aZ6Tr9ur_fpDcvv5-ma9uk1qyfKYVI2SDWILVQ7TrSbXugLFdVVlGlpWKSPbrG5qLbFlAvKKtbWQnGdKMGNYJc7J21PuwbufI4ZY9jbU2HUwoBtDyXOlRKbVJPwfFVqkXAs2oW_-QR_c6IfpkJliucmZnClxomrvQvDYlgc__dw_lpyVc7PlqdlybrZ8anayLk6WRcS_hpZSa5aLPy6-n8I</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>De Bernardis, Caleb</creator><creator>Vicente-Guijalba, Fernando</creator><creator>Martinez-Marin, Tomas</creator><creator>Lopez-Sanchez, Juan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4216-5175</orcidid></search><sort><creationdate>201608</creationdate><title>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</title><author>De Bernardis, Caleb ; Vicente-Guijalba, Fernando ; Martinez-Marin, Tomas ; Lopez-Sanchez, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Dynamical systems</topic><topic>Estimating</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>normalized difference vegetation index (NDVI)</topic><topic>particle filter (PF)</topic><topic>phenology</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>state space</topic><topic>synthetic aperture radar (SAR)</topic><topic>temperature</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bernardis, Caleb</creatorcontrib><creatorcontrib>Vicente-Guijalba, Fernando</creatorcontrib><creatorcontrib>Martinez-Marin, Tomas</creatorcontrib><creatorcontrib>Lopez-Sanchez, Juan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bernardis, Caleb</au><au>Vicente-Guijalba, Fernando</au><au>Martinez-Marin, Tomas</au><au>Lopez-Sanchez, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-08</date><risdate>2016</risdate><volume>9</volume><issue>8</issue><spage>3512</spage><epage>3523</epage><pages>3512-3523</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2539498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4216-5175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2016-08, Vol.9 (8), p.3512-3523 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_7447708 |
source | Alma/SFX Local Collection |
subjects | Agriculture Algorithms Data fusion Data integration Dynamical systems Estimating Estimation Mathematical model normalized difference vegetation index (NDVI) particle filter (PF) phenology Predictive models Real time Remote sensing Satellite imagery state space synthetic aperture radar (SAR) temperature Time series Time series analysis |
title | Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion With SAR and Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20to%20Real-Time%20Estimation%20of%20Crop%20Phenological%20States%20in%20a%20Dynamical%20Framework%20Based%20on%20NDVI%20Time%20Series:%20Data%20Fusion%20With%20SAR%20and%20Temperature&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=De%20Bernardis,%20Caleb&rft.date=2016-08&rft.volume=9&rft.issue=8&rft.spage=3512&rft.epage=3523&rft.pages=3512-3523&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2539498&rft_dat=%3Cproquest_ieee_%3E1837321730%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-bd54deefab8a1539877ba517bb67af0b594f6cdc74ef03a8b0fc34116530990b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830898040&rft_id=info:pmid/&rft_ieee_id=7447708&rfr_iscdi=true |