Loading…
An LMS adaptive second-order Volterra filter with a zeroth-order term: steady-state performance analysis in a time-varying environment
This article studies the steady-state performance of the least mean square (LMS) adaptive second-order Volterra filter (SOVF) with a zeroth-order term for Gaussian inputs. The mean-square-error (MSE) criterion is evaluated first. Then, SOV LMS algorithm-based updating equations are derived. Next, th...
Saved in:
Published in: | IEEE transactions on signal processing 1999-03, Vol.47 (3), p.872-876 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article studies the steady-state performance of the least mean square (LMS) adaptive second-order Volterra filter (SOVF) with a zeroth-order term for Gaussian inputs. The mean-square-error (MSE) criterion is evaluated first. Then, SOV LMS algorithm-based updating equations are derived. Next, the steady-state performance of the recursions is analyzed for a random walk model for the unknown system parameters, and the steady-state excess MSE is evaluated. Finally, the theoretical performance predictions are shown to be in good agreement with simulation results, especially for small step sizes. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.747794 |