Loading…

The two-dimensional lateral injection in-plane laser

In this paper, a two-dimensional (2-D) p-n junction was used for population inversion in a GaAs quantum-well laser. The device, incorporating modulation doping within the core of a separate confinement heterostructure, was designed to exploit the amphoteric behavior of silicon in GaAs [doping p-type...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 1999-03, Vol.35 (3), p.352-357
Main Authors: North, A., Burroughes, J., Burke, T., Shields, A., Norman, C.E., Pepper, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a two-dimensional (2-D) p-n junction was used for population inversion in a GaAs quantum-well laser. The device, incorporating modulation doping within the core of a separate confinement heterostructure, was designed to exploit the amphoteric behavior of silicon in GaAs [doping p-type on [311]A facets and n-type on [100]]. It is believed to be the first lasing device to use an amphoterically doped junction for population inversion. In the first attempted design (described here), CW lasing was achieved at temperatures up to 90 K. The factors affecting the temperature dependence of threshold are discussed in the context of possible design improvements. The device may eventually show improved modulation bandwidth over conventional vertical injection lasers with bulk contacts, since its geometry and the 2-D nature of the injection offer reduced capacitance, HEMT integration, and an elimination of carrier capture problems.
ISSN:0018-9197
1558-1713
DOI:10.1109/3.748840