Loading…

Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission

In this paper, a scheme is presented for detecting sea ice from Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDM). Less spreading along delay and Doppler axes were observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2016-10, Vol.9 (10), p.4795-4801
Main Authors: Yan, Qingyun, Huang, Weimin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13
cites cdi_FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13
container_end_page 4801
container_issue 10
container_start_page 4795
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 9
creator Yan, Qingyun
Huang, Weimin
description In this paper, a scheme is presented for detecting sea ice from Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDM). Less spreading along delay and Doppler axes were observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice from seawater through studying the values of various DDM observables, which describe the extent of DDM spreading. The area associated with a DDM that results in an observable below or above a threshold value will be classified as covered by sea ice and seawater, respectively. In particular, this study applies an adaptive incoherent summation to each DDM with efforts to increase signal-to-noise ratio and avoid the averaging between DDMs collected over surfaces of different types. Accordingly, an adaptive threshold is employed for the derived observable based on the incoherent summation interval for its corresponding DDM. The proposed sea ice detection method is tested with five different DDM observables. Through comparing DDM observable-based detection results with ground-truth sea ice data, the feasibility of this method is validated with an accuracy of up to 99.73% based on the pixel number observable.
doi_str_mv 10.1109/JSTARS.2016.2582690
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7508496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508496</ieee_id><sourcerecordid>1855388081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13</originalsourceid><addsrcrecordid>eNqNkUtr20AUhYeQQp20vyCbgW66kTJXV_PqLsRx3i1Y9lqMJ1eNgqxRZ-RF_n1kHLrIKqvLge8cuHyMnYHIAYQ9v6tWF8sqLwSovJCmUFYcsVkBEjKQKI_ZDCzaDEpRfmUnKb0IoQptccZCNThPmxB74te_qypb8oocv_XE5zSSH9vQ83Vq-79T7txrNg_D0FHkj25Iv_iijWnkS0q7bkx8EcOWj8_E1_l9zlfkn-e0DZUbM-CPbUrT1jf2pXFdou_v95StF1ery5vs4c_17eXFQ-ZR4ZipxhTSk980qERZOvWkpNKl1VQ6TaAaAu-bUvsNSk0bdEqCLsgKAvTeAZ6yn4fdIYZ_O0pjvW2Tp65zPYVdqsFIicYI8xkUNQpbKJzQHx_Ql7CL_fTInkIwFqWZKDxQPoaUIjX1ENuti681iHrvqz74qve-6ndfU-vs0GqJ6H9DS2FKq_ANbWOPNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833189358</pqid></control><display><type>article</type><title>Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission</title><source>Alma/SFX Local Collection</source><creator>Yan, Qingyun ; Huang, Weimin</creator><creatorcontrib>Yan, Qingyun ; Huang, Weimin</creatorcontrib><description>In this paper, a scheme is presented for detecting sea ice from Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDM). Less spreading along delay and Doppler axes were observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice from seawater through studying the values of various DDM observables, which describe the extent of DDM spreading. The area associated with a DDM that results in an observable below or above a threshold value will be classified as covered by sea ice and seawater, respectively. In particular, this study applies an adaptive incoherent summation to each DDM with efforts to increase signal-to-noise ratio and avoid the averaging between DDMs collected over surfaces of different types. Accordingly, an adaptive threshold is employed for the derived observable based on the incoherent summation interval for its corresponding DDM. The proposed sea ice detection method is tested with five different DDM observables. Through comparing DDM observable-based detection results with ground-truth sea ice data, the feasibility of this method is validated with an accuracy of up to 99.73% based on the pixel number observable.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2582690</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Delay ; Delay-Doppler map (DDM) ; Doppler ; Doppler effect ; Global Navigation Satellite System-Reflectometry (GNSS-R) ; Ice ; Marine ; Melting ; Remote sensing ; Satellites ; Sea ice ; sea ice detection ; Sea surface ; Sea water ; Sensors ; Spreading ; Thresholds</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-10, Vol.9 (10), p.4795-4801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13</citedby><cites>FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Qingyun</creatorcontrib><creatorcontrib>Huang, Weimin</creatorcontrib><title>Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this paper, a scheme is presented for detecting sea ice from Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDM). Less spreading along delay and Doppler axes were observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice from seawater through studying the values of various DDM observables, which describe the extent of DDM spreading. The area associated with a DDM that results in an observable below or above a threshold value will be classified as covered by sea ice and seawater, respectively. In particular, this study applies an adaptive incoherent summation to each DDM with efforts to increase signal-to-noise ratio and avoid the averaging between DDMs collected over surfaces of different types. Accordingly, an adaptive threshold is employed for the derived observable based on the incoherent summation interval for its corresponding DDM. The proposed sea ice detection method is tested with five different DDM observables. Through comparing DDM observable-based detection results with ground-truth sea ice data, the feasibility of this method is validated with an accuracy of up to 99.73% based on the pixel number observable.</description><subject>Delay</subject><subject>Delay-Doppler map (DDM)</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Global Navigation Satellite System-Reflectometry (GNSS-R)</subject><subject>Ice</subject><subject>Marine</subject><subject>Melting</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>sea ice detection</subject><subject>Sea surface</subject><subject>Sea water</subject><subject>Sensors</subject><subject>Spreading</subject><subject>Thresholds</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtr20AUhYeQQp20vyCbgW66kTJXV_PqLsRx3i1Y9lqMJ1eNgqxRZ-RF_n1kHLrIKqvLge8cuHyMnYHIAYQ9v6tWF8sqLwSovJCmUFYcsVkBEjKQKI_ZDCzaDEpRfmUnKb0IoQptccZCNThPmxB74te_qypb8oocv_XE5zSSH9vQ83Vq-79T7txrNg_D0FHkj25Iv_iijWnkS0q7bkx8EcOWj8_E1_l9zlfkn-e0DZUbM-CPbUrT1jf2pXFdou_v95StF1ery5vs4c_17eXFQ-ZR4ZipxhTSk980qERZOvWkpNKl1VQ6TaAaAu-bUvsNSk0bdEqCLsgKAvTeAZ6yn4fdIYZ_O0pjvW2Tp65zPYVdqsFIicYI8xkUNQpbKJzQHx_Ql7CL_fTInkIwFqWZKDxQPoaUIjX1ENuti681iHrvqz74qve-6ndfU-vs0GqJ6H9DS2FKq_ANbWOPNQ</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Yan, Qingyun</creator><creator>Huang, Weimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission</title><author>Yan, Qingyun ; Huang, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Delay</topic><topic>Delay-Doppler map (DDM)</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Global Navigation Satellite System-Reflectometry (GNSS-R)</topic><topic>Ice</topic><topic>Marine</topic><topic>Melting</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>sea ice detection</topic><topic>Sea surface</topic><topic>Sea water</topic><topic>Sensors</topic><topic>Spreading</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Qingyun</creatorcontrib><creatorcontrib>Huang, Weimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Qingyun</au><au>Huang, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-10</date><risdate>2016</risdate><volume>9</volume><issue>10</issue><spage>4795</spage><epage>4801</epage><pages>4795-4801</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this paper, a scheme is presented for detecting sea ice from Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDM). Less spreading along delay and Doppler axes were observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice from seawater through studying the values of various DDM observables, which describe the extent of DDM spreading. The area associated with a DDM that results in an observable below or above a threshold value will be classified as covered by sea ice and seawater, respectively. In particular, this study applies an adaptive incoherent summation to each DDM with efforts to increase signal-to-noise ratio and avoid the averaging between DDMs collected over surfaces of different types. Accordingly, an adaptive threshold is employed for the derived observable based on the incoherent summation interval for its corresponding DDM. The proposed sea ice detection method is tested with five different DDM observables. Through comparing DDM observable-based detection results with ground-truth sea ice data, the feasibility of this method is validated with an accuracy of up to 99.73% based on the pixel number observable.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2582690</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2016-10, Vol.9 (10), p.4795-4801
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_7508496
source Alma/SFX Local Collection
subjects Delay
Delay-Doppler map (DDM)
Doppler
Doppler effect
Global Navigation Satellite System-Reflectometry (GNSS-R)
Ice
Marine
Melting
Remote sensing
Satellites
Sea ice
sea ice detection
Sea surface
Sea water
Sensors
Spreading
Thresholds
title Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spaceborne%20GNSS-R%20Sea%20Ice%20Detection%20Using%20Delay-Doppler%20Maps:%20First%20Results%20From%20the%20U.K.%20TechDemoSat-1%20Mission&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yan,%20Qingyun&rft.date=2016-10&rft.volume=9&rft.issue=10&rft.spage=4795&rft.epage=4801&rft.pages=4795-4801&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2582690&rft_dat=%3Cproquest_ieee_%3E1855388081%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-6f825cecbf36044a6d6567497e4a7e16fe1ccf47cb357eb3a65172e90e13cca13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1833189358&rft_id=info:pmid/&rft_ieee_id=7508496&rfr_iscdi=true