Loading…

Detection of Global and Local Motion Changes in Human Crowds

Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2017-03, Vol.27 (3), p.603-612
Main Authors: de Almeida, Igor R., Cassol, Vinicius J., Badler, Norman I., Raupp Musse, Soraia, Rosito Jung, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023
cites cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023
container_end_page 612
container_issue 3
container_start_page 603
container_title IEEE transactions on circuits and systems for video technology
container_volume 27
creator de Almeida, Igor R.
Cassol, Vinicius J.
Badler, Norman I.
Raupp Musse, Soraia
Rosito Jung, Claudio
description Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.
doi_str_mv 10.1109/TCSVT.2016.2596199
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7524675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7524675</ieee_id><sourcerecordid>2174467756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt_QC8Lnrcms8kmAS-yaitUPFi9huzuRLe0m5psEf-9sS2e5jHz3hv4CLlkdMIY1TeL6vV9MQHKygkIXTKtj8iICaFyACqOk6aC5QqYOCVnMS4pZVxxOSK39zhgM3S-z7zLpitf21Vm-zab-yapZ787VZ-2_8CYdX02265tWgT_3cZzcuLsKuLFYY7J2-PDoprl85fpU3U3zxvQYsitk87JxjW14yARwBZoeV2XYKmyaBXXvLRYtK1WgjLHVFEzoLrVqHhNoRiT633vJvivLcbBLP029OmlASY5L6UUZXLB3tUEH2NAZzahW9vwYxg1f5TMjpL5o2QOlFLoah_qEPE_IAWkUlH8AhwSYo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174467756</pqid></control><display><type>article</type><title>Detection of Global and Local Motion Changes in Human Crowds</title><source>IEEE Electronic Library (IEL) Journals</source><creator>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</creator><creatorcontrib>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</creatorcontrib><description>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2596199</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Cameras ; Change detection ; Computational modeling ; Computer simulation ; Computer vision ; Concerts ; crowd simulation ; Histograms ; human crowd analysis ; Human motion ; Three dimensional motion ; Training ; Trajectory ; Video sequences ; video surveillance</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2017-03, Vol.27 (3), p.603-612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</citedby><cites>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</cites><orcidid>0000-0002-4711-5783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7524675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>de Almeida, Igor R.</creatorcontrib><creatorcontrib>Cassol, Vinicius J.</creatorcontrib><creatorcontrib>Badler, Norman I.</creatorcontrib><creatorcontrib>Raupp Musse, Soraia</creatorcontrib><creatorcontrib>Rosito Jung, Claudio</creatorcontrib><title>Detection of Global and Local Motion Changes in Human Crowds</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</description><subject>Adaptive optics</subject><subject>Cameras</subject><subject>Change detection</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Computer vision</subject><subject>Concerts</subject><subject>crowd simulation</subject><subject>Histograms</subject><subject>human crowd analysis</subject><subject>Human motion</subject><subject>Three dimensional motion</subject><subject>Training</subject><subject>Trajectory</subject><subject>Video sequences</subject><subject>video surveillance</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt_QC8Lnrcms8kmAS-yaitUPFi9huzuRLe0m5psEf-9sS2e5jHz3hv4CLlkdMIY1TeL6vV9MQHKygkIXTKtj8iICaFyACqOk6aC5QqYOCVnMS4pZVxxOSK39zhgM3S-z7zLpitf21Vm-zab-yapZ787VZ-2_8CYdX02265tWgT_3cZzcuLsKuLFYY7J2-PDoprl85fpU3U3zxvQYsitk87JxjW14yARwBZoeV2XYKmyaBXXvLRYtK1WgjLHVFEzoLrVqHhNoRiT633vJvivLcbBLP029OmlASY5L6UUZXLB3tUEH2NAZzahW9vwYxg1f5TMjpL5o2QOlFLoah_qEPE_IAWkUlH8AhwSYo8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>de Almeida, Igor R.</creator><creator>Cassol, Vinicius J.</creator><creator>Badler, Norman I.</creator><creator>Raupp Musse, Soraia</creator><creator>Rosito Jung, Claudio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4711-5783</orcidid></search><sort><creationdate>20170301</creationdate><title>Detection of Global and Local Motion Changes in Human Crowds</title><author>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Cameras</topic><topic>Change detection</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Computer vision</topic><topic>Concerts</topic><topic>crowd simulation</topic><topic>Histograms</topic><topic>human crowd analysis</topic><topic>Human motion</topic><topic>Three dimensional motion</topic><topic>Training</topic><topic>Trajectory</topic><topic>Video sequences</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Igor R.</creatorcontrib><creatorcontrib>Cassol, Vinicius J.</creatorcontrib><creatorcontrib>Badler, Norman I.</creatorcontrib><creatorcontrib>Raupp Musse, Soraia</creatorcontrib><creatorcontrib>Rosito Jung, Claudio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Igor R.</au><au>Cassol, Vinicius J.</au><au>Badler, Norman I.</au><au>Raupp Musse, Soraia</au><au>Rosito Jung, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Global and Local Motion Changes in Human Crowds</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>27</volume><issue>3</issue><spage>603</spage><epage>612</epage><pages>603-612</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2596199</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4711-5783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2017-03, Vol.27 (3), p.603-612
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_7524675
source IEEE Electronic Library (IEL) Journals
subjects Adaptive optics
Cameras
Change detection
Computational modeling
Computer simulation
Computer vision
Concerts
crowd simulation
Histograms
human crowd analysis
Human motion
Three dimensional motion
Training
Trajectory
Video sequences
video surveillance
title Detection of Global and Local Motion Changes in Human Crowds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Global%20and%20Local%20Motion%20Changes%20in%20Human%20Crowds&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=de%20Almeida,%20Igor%20R.&rft.date=2017-03-01&rft.volume=27&rft.issue=3&rft.spage=603&rft.epage=612&rft.pages=603-612&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2596199&rft_dat=%3Cproquest_ieee_%3E2174467756%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174467756&rft_id=info:pmid/&rft_ieee_id=7524675&rfr_iscdi=true