Loading…
Detection of Global and Local Motion Changes in Human Crowds
Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can b...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2017-03, Vol.27 (3), p.603-612 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023 |
container_end_page | 612 |
container_issue | 3 |
container_start_page | 603 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 27 |
creator | de Almeida, Igor R. Cassol, Vinicius J. Badler, Norman I. Raupp Musse, Soraia Rosito Jung, Claudio |
description | Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios. |
doi_str_mv | 10.1109/TCSVT.2016.2596199 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7524675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7524675</ieee_id><sourcerecordid>2174467756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt_QC8Lnrcms8kmAS-yaitUPFi9huzuRLe0m5psEf-9sS2e5jHz3hv4CLlkdMIY1TeL6vV9MQHKygkIXTKtj8iICaFyACqOk6aC5QqYOCVnMS4pZVxxOSK39zhgM3S-z7zLpitf21Vm-zab-yapZ787VZ-2_8CYdX02265tWgT_3cZzcuLsKuLFYY7J2-PDoprl85fpU3U3zxvQYsitk87JxjW14yARwBZoeV2XYKmyaBXXvLRYtK1WgjLHVFEzoLrVqHhNoRiT633vJvivLcbBLP029OmlASY5L6UUZXLB3tUEH2NAZzahW9vwYxg1f5TMjpL5o2QOlFLoah_qEPE_IAWkUlH8AhwSYo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174467756</pqid></control><display><type>article</type><title>Detection of Global and Local Motion Changes in Human Crowds</title><source>IEEE Electronic Library (IEL) Journals</source><creator>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</creator><creatorcontrib>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</creatorcontrib><description>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2596199</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Cameras ; Change detection ; Computational modeling ; Computer simulation ; Computer vision ; Concerts ; crowd simulation ; Histograms ; human crowd analysis ; Human motion ; Three dimensional motion ; Training ; Trajectory ; Video sequences ; video surveillance</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2017-03, Vol.27 (3), p.603-612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</citedby><cites>FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</cites><orcidid>0000-0002-4711-5783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7524675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>de Almeida, Igor R.</creatorcontrib><creatorcontrib>Cassol, Vinicius J.</creatorcontrib><creatorcontrib>Badler, Norman I.</creatorcontrib><creatorcontrib>Raupp Musse, Soraia</creatorcontrib><creatorcontrib>Rosito Jung, Claudio</creatorcontrib><title>Detection of Global and Local Motion Changes in Human Crowds</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</description><subject>Adaptive optics</subject><subject>Cameras</subject><subject>Change detection</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Computer vision</subject><subject>Concerts</subject><subject>crowd simulation</subject><subject>Histograms</subject><subject>human crowd analysis</subject><subject>Human motion</subject><subject>Three dimensional motion</subject><subject>Training</subject><subject>Trajectory</subject><subject>Video sequences</subject><subject>video surveillance</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt_QC8Lnrcms8kmAS-yaitUPFi9huzuRLe0m5psEf-9sS2e5jHz3hv4CLlkdMIY1TeL6vV9MQHKygkIXTKtj8iICaFyACqOk6aC5QqYOCVnMS4pZVxxOSK39zhgM3S-z7zLpitf21Vm-zab-yapZ787VZ-2_8CYdX02265tWgT_3cZzcuLsKuLFYY7J2-PDoprl85fpU3U3zxvQYsitk87JxjW14yARwBZoeV2XYKmyaBXXvLRYtK1WgjLHVFEzoLrVqHhNoRiT633vJvivLcbBLP029OmlASY5L6UUZXLB3tUEH2NAZzahW9vwYxg1f5TMjpL5o2QOlFLoah_qEPE_IAWkUlH8AhwSYo8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>de Almeida, Igor R.</creator><creator>Cassol, Vinicius J.</creator><creator>Badler, Norman I.</creator><creator>Raupp Musse, Soraia</creator><creator>Rosito Jung, Claudio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4711-5783</orcidid></search><sort><creationdate>20170301</creationdate><title>Detection of Global and Local Motion Changes in Human Crowds</title><author>de Almeida, Igor R. ; Cassol, Vinicius J. ; Badler, Norman I. ; Raupp Musse, Soraia ; Rosito Jung, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Cameras</topic><topic>Change detection</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Computer vision</topic><topic>Concerts</topic><topic>crowd simulation</topic><topic>Histograms</topic><topic>human crowd analysis</topic><topic>Human motion</topic><topic>Three dimensional motion</topic><topic>Training</topic><topic>Trajectory</topic><topic>Video sequences</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Igor R.</creatorcontrib><creatorcontrib>Cassol, Vinicius J.</creatorcontrib><creatorcontrib>Badler, Norman I.</creatorcontrib><creatorcontrib>Raupp Musse, Soraia</creatorcontrib><creatorcontrib>Rosito Jung, Claudio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Igor R.</au><au>Cassol, Vinicius J.</au><au>Badler, Norman I.</au><au>Raupp Musse, Soraia</au><au>Rosito Jung, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Global and Local Motion Changes in Human Crowds</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>27</volume><issue>3</issue><spage>603</spage><epage>612</epage><pages>603-612</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Crowds arise in a variety of situations, such as public concerts and sporting matches. In typical conditions, the crowd moves in an orderly manner, but panic situations may lead to catastrophic results. We propose a computer vision method to identify motion pattern changes in human crowds that can be related to an unusual event. The proposed approach can identify global changes, by evaluating 2D motion histograms in time, and also local effects, by identifying clusters that present similar spatial locations and velocity vectors. The method is tested both on publicly available data sets involving crowded scenarios and on synthetic data produced by a crowd simulation algorithm, which allows the creation of controlled environments with known motion patterns that are particularly suitable for multicamera scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2596199</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4711-5783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2017-03, Vol.27 (3), p.603-612 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_7524675 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive optics Cameras Change detection Computational modeling Computer simulation Computer vision Concerts crowd simulation Histograms human crowd analysis Human motion Three dimensional motion Training Trajectory Video sequences video surveillance |
title | Detection of Global and Local Motion Changes in Human Crowds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Global%20and%20Local%20Motion%20Changes%20in%20Human%20Crowds&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=de%20Almeida,%20Igor%20R.&rft.date=2017-03-01&rft.volume=27&rft.issue=3&rft.spage=603&rft.epage=612&rft.pages=603-612&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2596199&rft_dat=%3Cproquest_ieee_%3E2174467756%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-af7ff7cfcbf427e22a3ea4bb62a08aea84946ae3dd98501f183b1209d9e84b023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174467756&rft_id=info:pmid/&rft_ieee_id=7524675&rfr_iscdi=true |