Loading…

Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space

Numbers of neighbor embedding (NE) methods have been proposed, which use the image content metric based on the distance values such as Euclidean distance between the input image patch and the image patches in the training set to find the nearest neighbors. In contrast to these approaches we propose...

Full description

Saved in:
Bibliographic Details
Main Authors: Ikram, Javaria, Yao Lu, Jianwu Li, Nie Hui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 433
container_issue
container_start_page 429
container_title
container_volume
creator Ikram, Javaria
Yao Lu
Jianwu Li
Nie Hui
description Numbers of neighbor embedding (NE) methods have been proposed, which use the image content metric based on the distance values such as Euclidean distance between the input image patch and the image patches in the training set to find the nearest neighbors. In contrast to these approaches we propose to use image content metric that uses the most effective singular values of the patch of interest. Singular value content metric give the effective and quantitative measure of the true image content and can search the most similar patches from the training set which possess the local similarity with the input patch. First we find the K most similar low resolution (LR) and corresponding high resolution (HR) patches by using the proposed image content metric. Secondly we project the K neighbor onto a modified feature space by employing easy partial least square estimation (EZ-PLS). In modified feature space we propose to explore the data structure of both LR and HR manifold and iteratively update Z nearest neighbors and reconstruction weights based on the results from previous iteration. The Rigorous experimentation with application to face hallucination demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ICIP.2016.7532393
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7532393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7532393</ieee_id><sourcerecordid>7532393</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ae4b0b9fb866507a15c26f8b1112e979e4afe759ee5379128704a8f26e163a373</originalsourceid><addsrcrecordid>eNot0M1OwzAMB_CAhMQYewDExS_QETdt0hzRxGBiGhzgPLmdw4L6MaXpJB6Bt6bADpZl_a2fLAtxg3KOKO3darF6nacS9dzkKlVWnYmZNQVm2ihrNepzMUlVgUmRZ_ZSXPX9p5TjvsKJ-F5SxbCnuh4q31L0XQt9teeGoaSed_A7-_ZjqCnAkeqBoerayG2EhmPwFbguwHOy2UDPNVd_ALW7scBHDqN4ZAjsfDsq4McQmm7nnR9txxSHwNAfxiOuxYWjuufZqU_F-_LhbfGUrF8eV4v7deLR5DEhzkpZWlcWWufSEOZVql1RImLK1ljOyLHJLXOujMW0MDKjwqWaUStSRk3F7b_rmXl7CL6h8LU9fU79ADb8Y6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space</title><source>IEEE Xplore All Conference Series</source><creator>Ikram, Javaria ; Yao Lu ; Jianwu Li ; Nie Hui</creator><creatorcontrib>Ikram, Javaria ; Yao Lu ; Jianwu Li ; Nie Hui</creatorcontrib><description>Numbers of neighbor embedding (NE) methods have been proposed, which use the image content metric based on the distance values such as Euclidean distance between the input image patch and the image patches in the training set to find the nearest neighbors. In contrast to these approaches we propose to use image content metric that uses the most effective singular values of the patch of interest. Singular value content metric give the effective and quantitative measure of the true image content and can search the most similar patches from the training set which possess the local similarity with the input patch. First we find the K most similar low resolution (LR) and corresponding high resolution (HR) patches by using the proposed image content metric. Secondly we project the K neighbor onto a modified feature space by employing easy partial least square estimation (EZ-PLS). In modified feature space we propose to explore the data structure of both LR and HR manifold and iteratively update Z nearest neighbors and reconstruction weights based on the results from previous iteration. The Rigorous experimentation with application to face hallucination demonstrate the effectiveness of the proposed method.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467399616</identifier><identifier>EISBN: 1467399612</identifier><identifier>DOI: 10.1109/ICIP.2016.7532393</identifier><language>eng</language><publisher>IEEE</publisher><subject>Euclidean distance ; Face ; Face hallucination ; Image reconstruction ; Image resolution ; Manifolds ; Partial least square ; Singular value content metric ; Super resolution ; Training</subject><ispartof>2016 IEEE International Conference on Image Processing (ICIP), 2016, p.429-433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7532393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7532393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ikram, Javaria</creatorcontrib><creatorcontrib>Yao Lu</creatorcontrib><creatorcontrib>Jianwu Li</creatorcontrib><creatorcontrib>Nie Hui</creatorcontrib><title>Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space</title><title>2016 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Numbers of neighbor embedding (NE) methods have been proposed, which use the image content metric based on the distance values such as Euclidean distance between the input image patch and the image patches in the training set to find the nearest neighbors. In contrast to these approaches we propose to use image content metric that uses the most effective singular values of the patch of interest. Singular value content metric give the effective and quantitative measure of the true image content and can search the most similar patches from the training set which possess the local similarity with the input patch. First we find the K most similar low resolution (LR) and corresponding high resolution (HR) patches by using the proposed image content metric. Secondly we project the K neighbor onto a modified feature space by employing easy partial least square estimation (EZ-PLS). In modified feature space we propose to explore the data structure of both LR and HR manifold and iteratively update Z nearest neighbors and reconstruction weights based on the results from previous iteration. The Rigorous experimentation with application to face hallucination demonstrate the effectiveness of the proposed method.</description><subject>Euclidean distance</subject><subject>Face</subject><subject>Face hallucination</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Manifolds</subject><subject>Partial least square</subject><subject>Singular value content metric</subject><subject>Super resolution</subject><subject>Training</subject><issn>2381-8549</issn><isbn>9781467399616</isbn><isbn>1467399612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0M1OwzAMB_CAhMQYewDExS_QETdt0hzRxGBiGhzgPLmdw4L6MaXpJB6Bt6bADpZl_a2fLAtxg3KOKO3darF6nacS9dzkKlVWnYmZNQVm2ihrNepzMUlVgUmRZ_ZSXPX9p5TjvsKJ-F5SxbCnuh4q31L0XQt9teeGoaSed_A7-_ZjqCnAkeqBoerayG2EhmPwFbguwHOy2UDPNVd_ALW7scBHDqN4ZAjsfDsq4McQmm7nnR9txxSHwNAfxiOuxYWjuufZqU_F-_LhbfGUrF8eV4v7deLR5DEhzkpZWlcWWufSEOZVql1RImLK1ljOyLHJLXOujMW0MDKjwqWaUStSRk3F7b_rmXl7CL6h8LU9fU79ADb8Y6Q</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ikram, Javaria</creator><creator>Yao Lu</creator><creator>Jianwu Li</creator><creator>Nie Hui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201609</creationdate><title>Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space</title><author>Ikram, Javaria ; Yao Lu ; Jianwu Li ; Nie Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ae4b0b9fb866507a15c26f8b1112e979e4afe759ee5379128704a8f26e163a373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Euclidean distance</topic><topic>Face</topic><topic>Face hallucination</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Manifolds</topic><topic>Partial least square</topic><topic>Singular value content metric</topic><topic>Super resolution</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ikram, Javaria</creatorcontrib><creatorcontrib>Yao Lu</creatorcontrib><creatorcontrib>Jianwu Li</creatorcontrib><creatorcontrib>Nie Hui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ikram, Javaria</au><au>Yao Lu</au><au>Jianwu Li</au><au>Nie Hui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space</atitle><btitle>2016 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2016-09</date><risdate>2016</risdate><spage>429</spage><epage>433</epage><pages>429-433</pages><eissn>2381-8549</eissn><eisbn>9781467399616</eisbn><eisbn>1467399612</eisbn><abstract>Numbers of neighbor embedding (NE) methods have been proposed, which use the image content metric based on the distance values such as Euclidean distance between the input image patch and the image patches in the training set to find the nearest neighbors. In contrast to these approaches we propose to use image content metric that uses the most effective singular values of the patch of interest. Singular value content metric give the effective and quantitative measure of the true image content and can search the most similar patches from the training set which possess the local similarity with the input patch. First we find the K most similar low resolution (LR) and corresponding high resolution (HR) patches by using the proposed image content metric. Secondly we project the K neighbor onto a modified feature space by employing easy partial least square estimation (EZ-PLS). In modified feature space we propose to explore the data structure of both LR and HR manifold and iteratively update Z nearest neighbors and reconstruction weights based on the results from previous iteration. The Rigorous experimentation with application to face hallucination demonstrate the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2016.7532393</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2016 IEEE International Conference on Image Processing (ICIP), 2016, p.429-433
issn 2381-8549
language eng
recordid cdi_ieee_primary_7532393
source IEEE Xplore All Conference Series
subjects Euclidean distance
Face
Face hallucination
Image reconstruction
Image resolution
Manifolds
Partial least square
Singular value content metric
Super resolution
Training
title Face hallucination scheme based on singular value content metric for K-NN selection and an iterative refining in a modified feature space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20hallucination%20scheme%20based%20on%20singular%20value%20content%20metric%20for%20K-NN%20selection%20and%20an%20iterative%20refining%20in%20a%20modified%20feature%20space&rft.btitle=2016%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Ikram,%20Javaria&rft.date=2016-09&rft.spage=429&rft.epage=433&rft.pages=429-433&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2016.7532393&rft.eisbn=9781467399616&rft.eisbn_list=1467399612&rft_dat=%3Cieee_CHZPO%3E7532393%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ae4b0b9fb866507a15c26f8b1112e979e4afe759ee5379128704a8f26e163a373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7532393&rfr_iscdi=true