Loading…

A universal image coding approach using sparse steered Mixture-of-Experts regression

Our challenge is the design of a "universal" bit-efficient image compression approach. The prime goal is to allow reconstruction of images with high quality. In addition, we attempt to design the coder and decoder "universal", such that MPEG-7-like low-and mid-level descriptors a...

Full description

Saved in:
Bibliographic Details
Main Authors: Verhack, Ruben, Sikora, Thomas, Lange, Lieven, Van Wallendael, Glenn, Lambert, Peter
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2146
container_issue
container_start_page 2142
container_title
container_volume
creator Verhack, Ruben
Sikora, Thomas
Lange, Lieven
Van Wallendael, Glenn
Lambert, Peter
description Our challenge is the design of a "universal" bit-efficient image compression approach. The prime goal is to allow reconstruction of images with high quality. In addition, we attempt to design the coder and decoder "universal", such that MPEG-7-like low-and mid-level descriptors are an integral part of the coded representation. To this end, we introduce a sparse Mixture-of-Experts regression approach for coding images in the pixel domain. The underlying stochastic process of the pixel amplitudes are modelled as a 3-dimensional and multi-modal Mixture-of-Gaussians with K modes. This closed form continuous analytical model is estimated using the Expectation-Maximization algorithm and describes segments of pixels by local 3-D Gaussian steering kernels with global support. As such, each component in the mixture of experts steers along the direction of highest correlation. The conditional density then serves as the regression function. Experiments show that a considerable compression gain is achievable compared to JPEG for low bitrates for a large class of images, while forming attractive low-level descriptors for the image, such as the local segmentation boundaries, direction of intensity flow and the distribution of these parameters over the image.
doi_str_mv 10.1109/ICIP.2016.7532737
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7532737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7532737</ieee_id><sourcerecordid>7532737</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-c95e947bb068a6f858b3c655ab00979093678cac9b34b75b4fd7acef24e7519a3</originalsourceid><addsrcrecordid>eNotkN9KwzAchaMgOOceQLzJC6Qmzf_LUaYWJnoxr0eS_lojsy1JK_Ptnbirw4GPw8dB6I7RgjFqH-qqfitKylShJS811xdoZbVhQmlurWLqEi1KbhgxUthrdJPzJ6UnnrMF2q3x3MdvSNkdcPxyHeAwNLHvsBvHNLjwgef8V_PoUgacJ4AEDX6Jx2lOQIaWbI4jpCnjBF2CnOPQ36Kr1h0yrM65RO-Pm131TLavT3W13pJYGjGRYCVYob2nyjjVGmk8D0pK5ym12lLLlTbBBeu58Fp60TbaBWhLAVoy6_gS3f_vRgDYj-nkn3725xP4L0ZbUZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A universal image coding approach using sparse steered Mixture-of-Experts regression</title><source>IEEE Xplore All Conference Series</source><creator>Verhack, Ruben ; Sikora, Thomas ; Lange, Lieven ; Van Wallendael, Glenn ; Lambert, Peter</creator><creatorcontrib>Verhack, Ruben ; Sikora, Thomas ; Lange, Lieven ; Van Wallendael, Glenn ; Lambert, Peter</creatorcontrib><description>Our challenge is the design of a "universal" bit-efficient image compression approach. The prime goal is to allow reconstruction of images with high quality. In addition, we attempt to design the coder and decoder "universal", such that MPEG-7-like low-and mid-level descriptors are an integral part of the coded representation. To this end, we introduce a sparse Mixture-of-Experts regression approach for coding images in the pixel domain. The underlying stochastic process of the pixel amplitudes are modelled as a 3-dimensional and multi-modal Mixture-of-Gaussians with K modes. This closed form continuous analytical model is estimated using the Expectation-Maximization algorithm and describes segments of pixels by local 3-D Gaussian steering kernels with global support. As such, each component in the mixture of experts steers along the direction of highest correlation. The conditional density then serves as the regression function. Experiments show that a considerable compression gain is achievable compared to JPEG for low bitrates for a large class of images, while forming attractive low-level descriptors for the image, such as the local segmentation boundaries, direction of intensity flow and the distribution of these parameters over the image.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467399616</identifier><identifier>EISBN: 1467399612</identifier><identifier>DOI: 10.1109/ICIP.2016.7532737</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Encoding ; Gaussian Mixture Models ; Gaussian Mixture Regression ; Image coding ; Image edge detection ; Image reconstruction ; Mixture of Experts ; Sparse Image Coding ; Statistics ; Steering Regression ; Transform coding</subject><ispartof>2016 IEEE International Conference on Image Processing (ICIP), 2016, p.2142-2146</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7532737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7532737$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verhack, Ruben</creatorcontrib><creatorcontrib>Sikora, Thomas</creatorcontrib><creatorcontrib>Lange, Lieven</creatorcontrib><creatorcontrib>Van Wallendael, Glenn</creatorcontrib><creatorcontrib>Lambert, Peter</creatorcontrib><title>A universal image coding approach using sparse steered Mixture-of-Experts regression</title><title>2016 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Our challenge is the design of a "universal" bit-efficient image compression approach. The prime goal is to allow reconstruction of images with high quality. In addition, we attempt to design the coder and decoder "universal", such that MPEG-7-like low-and mid-level descriptors are an integral part of the coded representation. To this end, we introduce a sparse Mixture-of-Experts regression approach for coding images in the pixel domain. The underlying stochastic process of the pixel amplitudes are modelled as a 3-dimensional and multi-modal Mixture-of-Gaussians with K modes. This closed form continuous analytical model is estimated using the Expectation-Maximization algorithm and describes segments of pixels by local 3-D Gaussian steering kernels with global support. As such, each component in the mixture of experts steers along the direction of highest correlation. The conditional density then serves as the regression function. Experiments show that a considerable compression gain is achievable compared to JPEG for low bitrates for a large class of images, while forming attractive low-level descriptors for the image, such as the local segmentation boundaries, direction of intensity flow and the distribution of these parameters over the image.</description><subject>Decoding</subject><subject>Encoding</subject><subject>Gaussian Mixture Models</subject><subject>Gaussian Mixture Regression</subject><subject>Image coding</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Mixture of Experts</subject><subject>Sparse Image Coding</subject><subject>Statistics</subject><subject>Steering Regression</subject><subject>Transform coding</subject><issn>2381-8549</issn><isbn>9781467399616</isbn><isbn>1467399612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAchaMgOOceQLzJC6Qmzf_LUaYWJnoxr0eS_lojsy1JK_Ptnbirw4GPw8dB6I7RgjFqH-qqfitKylShJS811xdoZbVhQmlurWLqEi1KbhgxUthrdJPzJ6UnnrMF2q3x3MdvSNkdcPxyHeAwNLHvsBvHNLjwgef8V_PoUgacJ4AEDX6Jx2lOQIaWbI4jpCnjBF2CnOPQ36Kr1h0yrM65RO-Pm131TLavT3W13pJYGjGRYCVYob2nyjjVGmk8D0pK5ym12lLLlTbBBeu58Fp60TbaBWhLAVoy6_gS3f_vRgDYj-nkn3725xP4L0ZbUZg</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Verhack, Ruben</creator><creator>Sikora, Thomas</creator><creator>Lange, Lieven</creator><creator>Van Wallendael, Glenn</creator><creator>Lambert, Peter</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201609</creationdate><title>A universal image coding approach using sparse steered Mixture-of-Experts regression</title><author>Verhack, Ruben ; Sikora, Thomas ; Lange, Lieven ; Van Wallendael, Glenn ; Lambert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-c95e947bb068a6f858b3c655ab00979093678cac9b34b75b4fd7acef24e7519a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decoding</topic><topic>Encoding</topic><topic>Gaussian Mixture Models</topic><topic>Gaussian Mixture Regression</topic><topic>Image coding</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Mixture of Experts</topic><topic>Sparse Image Coding</topic><topic>Statistics</topic><topic>Steering Regression</topic><topic>Transform coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Verhack, Ruben</creatorcontrib><creatorcontrib>Sikora, Thomas</creatorcontrib><creatorcontrib>Lange, Lieven</creatorcontrib><creatorcontrib>Van Wallendael, Glenn</creatorcontrib><creatorcontrib>Lambert, Peter</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verhack, Ruben</au><au>Sikora, Thomas</au><au>Lange, Lieven</au><au>Van Wallendael, Glenn</au><au>Lambert, Peter</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A universal image coding approach using sparse steered Mixture-of-Experts regression</atitle><btitle>2016 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2016-09</date><risdate>2016</risdate><spage>2142</spage><epage>2146</epage><pages>2142-2146</pages><eissn>2381-8549</eissn><eisbn>9781467399616</eisbn><eisbn>1467399612</eisbn><abstract>Our challenge is the design of a "universal" bit-efficient image compression approach. The prime goal is to allow reconstruction of images with high quality. In addition, we attempt to design the coder and decoder "universal", such that MPEG-7-like low-and mid-level descriptors are an integral part of the coded representation. To this end, we introduce a sparse Mixture-of-Experts regression approach for coding images in the pixel domain. The underlying stochastic process of the pixel amplitudes are modelled as a 3-dimensional and multi-modal Mixture-of-Gaussians with K modes. This closed form continuous analytical model is estimated using the Expectation-Maximization algorithm and describes segments of pixels by local 3-D Gaussian steering kernels with global support. As such, each component in the mixture of experts steers along the direction of highest correlation. The conditional density then serves as the regression function. Experiments show that a considerable compression gain is achievable compared to JPEG for low bitrates for a large class of images, while forming attractive low-level descriptors for the image, such as the local segmentation boundaries, direction of intensity flow and the distribution of these parameters over the image.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2016.7532737</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2016 IEEE International Conference on Image Processing (ICIP), 2016, p.2142-2146
issn 2381-8549
language eng
recordid cdi_ieee_primary_7532737
source IEEE Xplore All Conference Series
subjects Decoding
Encoding
Gaussian Mixture Models
Gaussian Mixture Regression
Image coding
Image edge detection
Image reconstruction
Mixture of Experts
Sparse Image Coding
Statistics
Steering Regression
Transform coding
title A universal image coding approach using sparse steered Mixture-of-Experts regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20universal%20image%20coding%20approach%20using%20sparse%20steered%20Mixture-of-Experts%20regression&rft.btitle=2016%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Verhack,%20Ruben&rft.date=2016-09&rft.spage=2142&rft.epage=2146&rft.pages=2142-2146&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2016.7532737&rft.eisbn=9781467399616&rft.eisbn_list=1467399612&rft_dat=%3Cieee_CHZPO%3E7532737%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i284t-c95e947bb068a6f858b3c655ab00979093678cac9b34b75b4fd7acef24e7519a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7532737&rfr_iscdi=true