Loading…

A two-stage multi-hypothesis reconstruction scheme in compressed video sensing

Existing multi-hypothesis (MH) prediction algorithms in compressed video sensing (CVS) are all deployed in measurement domain, which restricts the flexibility of block partitioning in the reconstruction process and decreases the reconstruction accuracy. To address this issue, this paper proposes a t...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei-Feng Ou, Chun-Ling Yang, Wen-Hao Li, Li-Hong Ma
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2498
container_issue
container_start_page 2494
container_title
container_volume
creator Wei-Feng Ou
Chun-Ling Yang
Wen-Hao Li
Li-Hong Ma
description Existing multi-hypothesis (MH) prediction algorithms in compressed video sensing (CVS) are all deployed in measurement domain, which restricts the flexibility of block partitioning in the reconstruction process and decreases the reconstruction accuracy. To address this issue, this paper proposes a two-stage multi-hypothesis reconstruction (2sMHR) scheme which deploys the MH prediction in measurement domain and pixel domain successively. Two implementation schemes, GOP-wise and frame-wise scheme, are developed for the 2sMHR. Furthermore, a new weighted metric combining the Euclidean distance and correlation coefficient is designed for the Tikhonov-regularized MH prediction model. Simulation results show that the proposed two-stage MH reconstruction scheme obtains higher reconstruction accuracy than the state-of-the-art CVS prediction methods.
doi_str_mv 10.1109/ICIP.2016.7532808
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7532808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7532808</ieee_id><sourcerecordid>7532808</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-870342c66ad2f3b2d2272e131e165cf36048720f7127bf15297ebe583a8e994f3</originalsourceid><addsrcrecordid>eNotj8tKw0AYRkdBsNY-gLiZF5g4l8xtWYLaQFEXui7J5J9mpMmEzFTp21uwq29zOJwPoQdGC8aofaqr-qPglKlCS8ENNVdoZbVhpdLCWsXUNVpwYRgxsrS36C6lb0rPvGAL9LbG-TeSlJs94OF4yIH0pynmHlJIeAYXx5Tno8shjji5HgbAYcQuDtMMKUGHf0IHEScYUxj39-jGN4cEq8su0dfL82e1Idv317pab0lgWmZiNBUld0o1Hfei5R3nmsM5CJiSzgtFS6M59Zpx3XomudXQgjSiMWBt6cUSPf57AwDspjkMzXzaXe6LPx7JTrU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A two-stage multi-hypothesis reconstruction scheme in compressed video sensing</title><source>IEEE Xplore All Conference Series</source><creator>Wei-Feng Ou ; Chun-Ling Yang ; Wen-Hao Li ; Li-Hong Ma</creator><creatorcontrib>Wei-Feng Ou ; Chun-Ling Yang ; Wen-Hao Li ; Li-Hong Ma</creatorcontrib><description>Existing multi-hypothesis (MH) prediction algorithms in compressed video sensing (CVS) are all deployed in measurement domain, which restricts the flexibility of block partitioning in the reconstruction process and decreases the reconstruction accuracy. To address this issue, this paper proposes a two-stage multi-hypothesis reconstruction (2sMHR) scheme which deploys the MH prediction in measurement domain and pixel domain successively. Two implementation schemes, GOP-wise and frame-wise scheme, are developed for the 2sMHR. Furthermore, a new weighted metric combining the Euclidean distance and correlation coefficient is designed for the Tikhonov-regularized MH prediction model. Simulation results show that the proposed two-stage MH reconstruction scheme obtains higher reconstruction accuracy than the state-of-the-art CVS prediction methods.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467399616</identifier><identifier>EISBN: 1467399612</identifier><identifier>DOI: 10.1109/ICIP.2016.7532808</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; compressed video sensing ; Correlation coefficient ; Euclidean distance ; multi-hypothesis ; prediction ; Prediction algorithms ; reconstruction ; Sensors ; Weight measurement</subject><ispartof>2016 IEEE International Conference on Image Processing (ICIP), 2016, p.2494-2498</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7532808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7532808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei-Feng Ou</creatorcontrib><creatorcontrib>Chun-Ling Yang</creatorcontrib><creatorcontrib>Wen-Hao Li</creatorcontrib><creatorcontrib>Li-Hong Ma</creatorcontrib><title>A two-stage multi-hypothesis reconstruction scheme in compressed video sensing</title><title>2016 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Existing multi-hypothesis (MH) prediction algorithms in compressed video sensing (CVS) are all deployed in measurement domain, which restricts the flexibility of block partitioning in the reconstruction process and decreases the reconstruction accuracy. To address this issue, this paper proposes a two-stage multi-hypothesis reconstruction (2sMHR) scheme which deploys the MH prediction in measurement domain and pixel domain successively. Two implementation schemes, GOP-wise and frame-wise scheme, are developed for the 2sMHR. Furthermore, a new weighted metric combining the Euclidean distance and correlation coefficient is designed for the Tikhonov-regularized MH prediction model. Simulation results show that the proposed two-stage MH reconstruction scheme obtains higher reconstruction accuracy than the state-of-the-art CVS prediction methods.</description><subject>Adaptation models</subject><subject>compressed video sensing</subject><subject>Correlation coefficient</subject><subject>Euclidean distance</subject><subject>multi-hypothesis</subject><subject>prediction</subject><subject>Prediction algorithms</subject><subject>reconstruction</subject><subject>Sensors</subject><subject>Weight measurement</subject><issn>2381-8549</issn><isbn>9781467399616</isbn><isbn>1467399612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AYRkdBsNY-gLiZF5g4l8xtWYLaQFEXui7J5J9mpMmEzFTp21uwq29zOJwPoQdGC8aofaqr-qPglKlCS8ENNVdoZbVhpdLCWsXUNVpwYRgxsrS36C6lb0rPvGAL9LbG-TeSlJs94OF4yIH0pynmHlJIeAYXx5Tno8shjji5HgbAYcQuDtMMKUGHf0IHEScYUxj39-jGN4cEq8su0dfL82e1Idv317pab0lgWmZiNBUld0o1Hfei5R3nmsM5CJiSzgtFS6M59Zpx3XomudXQgjSiMWBt6cUSPf57AwDspjkMzXzaXe6LPx7JTrU</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Wei-Feng Ou</creator><creator>Chun-Ling Yang</creator><creator>Wen-Hao Li</creator><creator>Li-Hong Ma</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201609</creationdate><title>A two-stage multi-hypothesis reconstruction scheme in compressed video sensing</title><author>Wei-Feng Ou ; Chun-Ling Yang ; Wen-Hao Li ; Li-Hong Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-870342c66ad2f3b2d2272e131e165cf36048720f7127bf15297ebe583a8e994f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>compressed video sensing</topic><topic>Correlation coefficient</topic><topic>Euclidean distance</topic><topic>multi-hypothesis</topic><topic>prediction</topic><topic>Prediction algorithms</topic><topic>reconstruction</topic><topic>Sensors</topic><topic>Weight measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei-Feng Ou</creatorcontrib><creatorcontrib>Chun-Ling Yang</creatorcontrib><creatorcontrib>Wen-Hao Li</creatorcontrib><creatorcontrib>Li-Hong Ma</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei-Feng Ou</au><au>Chun-Ling Yang</au><au>Wen-Hao Li</au><au>Li-Hong Ma</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A two-stage multi-hypothesis reconstruction scheme in compressed video sensing</atitle><btitle>2016 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2016-09</date><risdate>2016</risdate><spage>2494</spage><epage>2498</epage><pages>2494-2498</pages><eissn>2381-8549</eissn><eisbn>9781467399616</eisbn><eisbn>1467399612</eisbn><abstract>Existing multi-hypothesis (MH) prediction algorithms in compressed video sensing (CVS) are all deployed in measurement domain, which restricts the flexibility of block partitioning in the reconstruction process and decreases the reconstruction accuracy. To address this issue, this paper proposes a two-stage multi-hypothesis reconstruction (2sMHR) scheme which deploys the MH prediction in measurement domain and pixel domain successively. Two implementation schemes, GOP-wise and frame-wise scheme, are developed for the 2sMHR. Furthermore, a new weighted metric combining the Euclidean distance and correlation coefficient is designed for the Tikhonov-regularized MH prediction model. Simulation results show that the proposed two-stage MH reconstruction scheme obtains higher reconstruction accuracy than the state-of-the-art CVS prediction methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2016.7532808</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2016 IEEE International Conference on Image Processing (ICIP), 2016, p.2494-2498
issn 2381-8549
language eng
recordid cdi_ieee_primary_7532808
source IEEE Xplore All Conference Series
subjects Adaptation models
compressed video sensing
Correlation coefficient
Euclidean distance
multi-hypothesis
prediction
Prediction algorithms
reconstruction
Sensors
Weight measurement
title A two-stage multi-hypothesis reconstruction scheme in compressed video sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20two-stage%20multi-hypothesis%20reconstruction%20scheme%20in%20compressed%20video%20sensing&rft.btitle=2016%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Wei-Feng%20Ou&rft.date=2016-09&rft.spage=2494&rft.epage=2498&rft.pages=2494-2498&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2016.7532808&rft.eisbn=9781467399616&rft.eisbn_list=1467399612&rft_dat=%3Cieee_CHZPO%3E7532808%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-870342c66ad2f3b2d2272e131e165cf36048720f7127bf15297ebe583a8e994f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7532808&rfr_iscdi=true