Loading…

ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars

A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent projec...

Full description

Saved in:
Bibliographic Details
Main Authors: Shafiee, Ali, Nag, Anirban, Muralimanohar, Naveen, Balasubramonian, Rajeev, Strachan, John Paul, Miao Hu, Williams, R. Stanley, Srikumar, Vivek
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a327t-65665a9f4f9bfd6a379829a736a66f994be82c2d150c72aa7327047d0b365daf3
cites
container_end_page 26
container_issue
container_start_page 14
container_title
container_volume
creator Shafiee, Ali
Nag, Anirban
Muralimanohar, Naveen
Balasubramonian, Rajeev
Strachan, John Paul
Miao Hu
Williams, R. Stanley
Srikumar, Vivek
description A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks. This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.
doi_str_mv 10.1109/ISCA.2016.12
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7551379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7551379</ieee_id><sourcerecordid>7551379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-65665a9f4f9bfd6a379829a736a66f994be82c2d150c72aa7327047d0b365daf3</originalsourceid><addsrcrecordid>eNotjM1KxDAYRaMoOI6zc-cmL9AxP833Ne5C8acw6GIU3MiQtqlGO42kGQff3qKuDtx7OIScc7bknOnLal2apWAcllwckIXGgueAstA58kMyEwpVhlw-H5EZZyAzKDSekNNxfGeMa61gRl6qtTHlFTW0DMNX6HfJh8H29N7t4i_SPsQPaprG9S7aFCLd-_RGqyFb-7SjZpLDKzVxGrcu-Yb6gZYxjGNt43hGjjvbj27xzzl5url-LO-y1cNtVZpVZqXAlIECUFZ3eafrrgUrURdCW5RgATqt89oVohEtV6xBYadDIMuxZbUE1dpOzsnFX9c75zaf0W9t_N6gUnxKyR99k1PS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars</title><source>IEEE Xplore All Conference Series</source><creator>Shafiee, Ali ; Nag, Anirban ; Muralimanohar, Naveen ; Balasubramonian, Rajeev ; Strachan, John Paul ; Miao Hu ; Williams, R. Stanley ; Srikumar, Vivek</creator><creatorcontrib>Shafiee, Ali ; Nag, Anirban ; Muralimanohar, Naveen ; Balasubramonian, Rajeev ; Strachan, John Paul ; Miao Hu ; Williams, R. Stanley ; Srikumar, Vivek</creatorcontrib><description>A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks. This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.</description><identifier>ISSN: 1063-6897</identifier><identifier>EISSN: 2575-713X</identifier><identifier>EISBN: 9781467389471</identifier><identifier>EISBN: 1467389471</identifier><identifier>DOI: 10.1109/ISCA.2016.12</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>accelerator ; analog ; Biological neural networks ; CNN ; Computer architecture ; DNN ; Kernel ; Machine learning algorithms ; memristor ; Memristors ; neural ; Neurons ; Pipelines</subject><ispartof>2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016, p.14-26</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-65665a9f4f9bfd6a379829a736a66f994be82c2d150c72aa7327047d0b365daf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7551379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7551379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shafiee, Ali</creatorcontrib><creatorcontrib>Nag, Anirban</creatorcontrib><creatorcontrib>Muralimanohar, Naveen</creatorcontrib><creatorcontrib>Balasubramonian, Rajeev</creatorcontrib><creatorcontrib>Strachan, John Paul</creatorcontrib><creatorcontrib>Miao Hu</creatorcontrib><creatorcontrib>Williams, R. Stanley</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><title>ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars</title><title>2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)</title><addtitle>ISCA</addtitle><description>A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks. This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.</description><subject>accelerator</subject><subject>analog</subject><subject>Biological neural networks</subject><subject>CNN</subject><subject>Computer architecture</subject><subject>DNN</subject><subject>Kernel</subject><subject>Machine learning algorithms</subject><subject>memristor</subject><subject>Memristors</subject><subject>neural</subject><subject>Neurons</subject><subject>Pipelines</subject><issn>1063-6897</issn><issn>2575-713X</issn><isbn>9781467389471</isbn><isbn>1467389471</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KxDAYRaMoOI6zc-cmL9AxP833Ne5C8acw6GIU3MiQtqlGO42kGQff3qKuDtx7OIScc7bknOnLal2apWAcllwckIXGgueAstA58kMyEwpVhlw-H5EZZyAzKDSekNNxfGeMa61gRl6qtTHlFTW0DMNX6HfJh8H29N7t4i_SPsQPaprG9S7aFCLd-_RGqyFb-7SjZpLDKzVxGrcu-Yb6gZYxjGNt43hGjjvbj27xzzl5url-LO-y1cNtVZpVZqXAlIECUFZ3eafrrgUrURdCW5RgATqt89oVohEtV6xBYadDIMuxZbUE1dpOzsnFX9c75zaf0W9t_N6gUnxKyR99k1PS</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Shafiee, Ali</creator><creator>Nag, Anirban</creator><creator>Muralimanohar, Naveen</creator><creator>Balasubramonian, Rajeev</creator><creator>Strachan, John Paul</creator><creator>Miao Hu</creator><creator>Williams, R. Stanley</creator><creator>Srikumar, Vivek</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201606</creationdate><title>ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars</title><author>Shafiee, Ali ; Nag, Anirban ; Muralimanohar, Naveen ; Balasubramonian, Rajeev ; Strachan, John Paul ; Miao Hu ; Williams, R. Stanley ; Srikumar, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-65665a9f4f9bfd6a379829a736a66f994be82c2d150c72aa7327047d0b365daf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>accelerator</topic><topic>analog</topic><topic>Biological neural networks</topic><topic>CNN</topic><topic>Computer architecture</topic><topic>DNN</topic><topic>Kernel</topic><topic>Machine learning algorithms</topic><topic>memristor</topic><topic>Memristors</topic><topic>neural</topic><topic>Neurons</topic><topic>Pipelines</topic><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Ali</creatorcontrib><creatorcontrib>Nag, Anirban</creatorcontrib><creatorcontrib>Muralimanohar, Naveen</creatorcontrib><creatorcontrib>Balasubramonian, Rajeev</creatorcontrib><creatorcontrib>Strachan, John Paul</creatorcontrib><creatorcontrib>Miao Hu</creatorcontrib><creatorcontrib>Williams, R. Stanley</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shafiee, Ali</au><au>Nag, Anirban</au><au>Muralimanohar, Naveen</au><au>Balasubramonian, Rajeev</au><au>Strachan, John Paul</au><au>Miao Hu</au><au>Williams, R. Stanley</au><au>Srikumar, Vivek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars</atitle><btitle>2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)</btitle><stitle>ISCA</stitle><date>2016-06</date><risdate>2016</risdate><spage>14</spage><epage>26</epage><pages>14-26</pages><issn>1063-6897</issn><eissn>2575-713X</eissn><eisbn>9781467389471</eisbn><eisbn>1467389471</eisbn><coden>IEEPAD</coden><abstract>A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks. This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.</abstract><pub>IEEE</pub><doi>10.1109/ISCA.2016.12</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6897
ispartof 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016, p.14-26
issn 1063-6897
2575-713X
language eng
recordid cdi_ieee_primary_7551379
source IEEE Xplore All Conference Series
subjects accelerator
analog
Biological neural networks
CNN
Computer architecture
DNN
Kernel
Machine learning algorithms
memristor
Memristors
neural
Neurons
Pipelines
title ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ISAAC:%20A%20Convolutional%20Neural%20Network%20Accelerator%20with%20In-Situ%20Analog%20Arithmetic%20in%20Crossbars&rft.btitle=2016%20ACM/IEEE%2043rd%20Annual%20International%20Symposium%20on%20Computer%20Architecture%20(ISCA)&rft.au=Shafiee,%20Ali&rft.date=2016-06&rft.spage=14&rft.epage=26&rft.pages=14-26&rft.issn=1063-6897&rft.eissn=2575-713X&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISCA.2016.12&rft.eisbn=9781467389471&rft.eisbn_list=1467389471&rft_dat=%3Cieee_CHZPO%3E7551379%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-65665a9f4f9bfd6a379829a736a66f994be82c2d150c72aa7327047d0b365daf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7551379&rfr_iscdi=true