Loading…
Evaluating Straight-Line Programs over Balls
Interval arithmetic achieves numerical reliability for a wide range of applications, at the price of a performance penalty. For applications to homotopy continuation, one key ingredient is the efficient and reliable evaluation of complex polynomials represented by straight-line programs. This is bes...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 149 |
container_issue | |
container_start_page | 142 |
container_title | |
container_volume | |
creator | Van Der Hoeven, Joris Lecerf, Gregoire |
description | Interval arithmetic achieves numerical reliability for a wide range of applications, at the price of a performance penalty. For applications to homotopy continuation, one key ingredient is the efficient and reliable evaluation of complex polynomials represented by straight-line programs. This is best achieved using ball arithmetic, a variant of interval arithmetic. In this article, we describe strategies for reducing the performance penalty of basic operations on balls. We also show how to bound the effect of rounding errors at the global level of evaluating a straight-line program. This allows us to introduce a new and faster "transient" variant of ball arithmetic. |
doi_str_mv | 10.1109/ARITH.2016.12 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7563283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7563283</ieee_id><sourcerecordid>7563283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-ac2660314e23e48311d19c0d5bc43d9d2472cadb8aa7afdebd3bec54a0be7cf93</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPEICs65oycv_QCm5k3S_DnOsblBQdF5Hm-TtzXSbZLWgd9eQU8Pv8vD2A2IEkD4-_nLZrsupQBTgjxjM28dVML_Gow9ZxMQRnHjnL9kV8PwIQR4b-yE3S1P2H_hmA5d8TpmTN37yOt0oOI5H7uM-6E4nigXD9j3wzW7aLEfaPbfKXtbLbeLNa-fHjeLec2TBD1yDNIYoUCTVKSdAojgg4hVE7SKPkptZcDYOESLbaQmqoZCpVE0ZEPr1ZTd_n0TEe0-c9pj_t7ZyijplPoBwRFCYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating Straight-Line Programs over Balls</title><source>IEEE Xplore All Conference Series</source><creator>Van Der Hoeven, Joris ; Lecerf, Gregoire</creator><creatorcontrib>Van Der Hoeven, Joris ; Lecerf, Gregoire</creatorcontrib><description>Interval arithmetic achieves numerical reliability for a wide range of applications, at the price of a performance penalty. For applications to homotopy continuation, one key ingredient is the efficient and reliable evaluation of complex polynomials represented by straight-line programs. This is best achieved using ball arithmetic, a variant of interval arithmetic. In this article, we describe strategies for reducing the performance penalty of basic operations on balls. We also show how to bound the effect of rounding errors at the global level of evaluating a straight-line program. This allows us to introduce a new and faster "transient" variant of ball arithmetic.</description><identifier>ISSN: 1063-6889</identifier><identifier>EISBN: 9781509016167</identifier><identifier>EISBN: 1509016163</identifier><identifier>DOI: 10.1109/ARITH.2016.12</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>ball arithmetic ; C++ languages ; Context ; Hardware ; Libraries ; polynomial evaluation ; Program processors ; Reliability ; software implementation ; Switches</subject><ispartof>2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), 2016, p.142-149</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7563283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7563283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Van Der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Gregoire</creatorcontrib><title>Evaluating Straight-Line Programs over Balls</title><title>2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)</title><addtitle>ARITH</addtitle><description>Interval arithmetic achieves numerical reliability for a wide range of applications, at the price of a performance penalty. For applications to homotopy continuation, one key ingredient is the efficient and reliable evaluation of complex polynomials represented by straight-line programs. This is best achieved using ball arithmetic, a variant of interval arithmetic. In this article, we describe strategies for reducing the performance penalty of basic operations on balls. We also show how to bound the effect of rounding errors at the global level of evaluating a straight-line program. This allows us to introduce a new and faster "transient" variant of ball arithmetic.</description><subject>ball arithmetic</subject><subject>C++ languages</subject><subject>Context</subject><subject>Hardware</subject><subject>Libraries</subject><subject>polynomial evaluation</subject><subject>Program processors</subject><subject>Reliability</subject><subject>software implementation</subject><subject>Switches</subject><issn>1063-6889</issn><isbn>9781509016167</isbn><isbn>1509016163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE9LwzAYgPEICs65oycv_QCm5k3S_DnOsblBQdF5Hm-TtzXSbZLWgd9eQU8Pv8vD2A2IEkD4-_nLZrsupQBTgjxjM28dVML_Gow9ZxMQRnHjnL9kV8PwIQR4b-yE3S1P2H_hmA5d8TpmTN37yOt0oOI5H7uM-6E4nigXD9j3wzW7aLEfaPbfKXtbLbeLNa-fHjeLec2TBD1yDNIYoUCTVKSdAojgg4hVE7SKPkptZcDYOESLbaQmqoZCpVE0ZEPr1ZTd_n0TEe0-c9pj_t7ZyijplPoBwRFCYw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Van Der Hoeven, Joris</creator><creator>Lecerf, Gregoire</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201607</creationdate><title>Evaluating Straight-Line Programs over Balls</title><author>Van Der Hoeven, Joris ; Lecerf, Gregoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-ac2660314e23e48311d19c0d5bc43d9d2472cadb8aa7afdebd3bec54a0be7cf93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ball arithmetic</topic><topic>C++ languages</topic><topic>Context</topic><topic>Hardware</topic><topic>Libraries</topic><topic>polynomial evaluation</topic><topic>Program processors</topic><topic>Reliability</topic><topic>software implementation</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Gregoire</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van Der Hoeven, Joris</au><au>Lecerf, Gregoire</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating Straight-Line Programs over Balls</atitle><btitle>2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)</btitle><stitle>ARITH</stitle><date>2016-07</date><risdate>2016</risdate><spage>142</spage><epage>149</epage><pages>142-149</pages><issn>1063-6889</issn><eisbn>9781509016167</eisbn><eisbn>1509016163</eisbn><coden>IEEPAD</coden><abstract>Interval arithmetic achieves numerical reliability for a wide range of applications, at the price of a performance penalty. For applications to homotopy continuation, one key ingredient is the efficient and reliable evaluation of complex polynomials represented by straight-line programs. This is best achieved using ball arithmetic, a variant of interval arithmetic. In this article, we describe strategies for reducing the performance penalty of basic operations on balls. We also show how to bound the effect of rounding errors at the global level of evaluating a straight-line program. This allows us to introduce a new and faster "transient" variant of ball arithmetic.</abstract><pub>IEEE</pub><doi>10.1109/ARITH.2016.12</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6889 |
ispartof | 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), 2016, p.142-149 |
issn | 1063-6889 |
language | eng |
recordid | cdi_ieee_primary_7563283 |
source | IEEE Xplore All Conference Series |
subjects | ball arithmetic C++ languages Context Hardware Libraries polynomial evaluation Program processors Reliability software implementation Switches |
title | Evaluating Straight-Line Programs over Balls |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20Straight-Line%20Programs%20over%20Balls&rft.btitle=2016%20IEEE%2023nd%20Symposium%20on%20Computer%20Arithmetic%20(ARITH)&rft.au=Van%20Der%20Hoeven,%20Joris&rft.date=2016-07&rft.spage=142&rft.epage=149&rft.pages=142-149&rft.issn=1063-6889&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ARITH.2016.12&rft.eisbn=9781509016167&rft.eisbn_list=1509016163&rft_dat=%3Cieee_CHZPO%3E7563283%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i214t-ac2660314e23e48311d19c0d5bc43d9d2472cadb8aa7afdebd3bec54a0be7cf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7563283&rfr_iscdi=true |