Loading…
MetaFlow: A Scalable Metadata Lookup Service for Distributed File Systems in Data Centers
In large-scale distributed file systems, efficient metadata operations are critical since most file operations have to interact with metadata servers first. In existing distributed hash table (DHT) based metadata management systems, the lookup service could be a performance bottleneck due to its sig...
Saved in:
Published in: | IEEE transactions on big data 2018-06, Vol.4 (2), p.203-216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In large-scale distributed file systems, efficient metadata operations are critical since most file operations have to interact with metadata servers first. In existing distributed hash table (DHT) based metadata management systems, the lookup service could be a performance bottleneck due to its significant CPU overhead. Our investigations showed that the lookup service could reduce system throughput by up to 70 percent, and increase system latency by a factor of up to 8 compared to ideal scenarios. In this paper, we present MetaFlow, a scalable metadata lookup service utilizing software-defined networking (SDN) techniques to distribute lookup workload over network components. MetaFlow tackles the lookup bottleneck problem by leveraging B-tree, which is constructed over the physical topology, to manage flow tables for SDN-enabled switches. Therefore, metadata requests can be forwarded to appropriate servers using only switches. Extensive performance evaluations in both simulations and testbed showed that MetaFlow increases system throughput by a factor of up to 3.2, and reduce system latency by a factor of up to 5 compared to DHT-based systems. We also deployed MetaFlow in a distributed file system, and demonstrated significant performance improvement. |
---|---|
ISSN: | 2332-7790 2332-7790 2372-2096 |
DOI: | 10.1109/TBDATA.2016.2612241 |