Loading…

Cepstrum-based pitch detection using a new statistical V/UV classification algorithm

An improved cepstrum-based voicing detection and pitch determination algorithm is presented. Voicing decisions are made using a multifeature voiced/unvoiced classification algorithm based on statistical analysis of cepstral peak, zero-crossing rate, and energy of short-time segments of the speech si...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on speech and audio processing 1999-05, Vol.7 (3), p.333-338
Main Authors: Ahmadi, S., Spanias, A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43
cites cdi_FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43
container_end_page 338
container_issue 3
container_start_page 333
container_title IEEE transactions on speech and audio processing
container_volume 7
creator Ahmadi, S.
Spanias, A.S.
description An improved cepstrum-based voicing detection and pitch determination algorithm is presented. Voicing decisions are made using a multifeature voiced/unvoiced classification algorithm based on statistical analysis of cepstral peak, zero-crossing rate, and energy of short-time segments of the speech signal. Pitch frequency information is extracted by a modified cepstrum-based method and then carefully refined using pitch tracking, correction, and smoothing algorithms. Performance analysis on a large database indicates considerable improvement relative to the conventional cepstrum method. The proposed algorithm is also shown to be robust to additive noise.
doi_str_mv 10.1109/89.759042
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_759042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759042</ieee_id><sourcerecordid>28233537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEElAYWJkyIARDWju2Y2dEFV9SJZa2a3RJzq1Rvsi5Qvx7UlLBxnSnu-ce6d4guOJsyjlLZyadapUyGR8FZ1wpE8VCieOhZ4mIkkQnp8E50TtjzHAtz4LlHDvy_a6OciAsw875YhuW6LHwrm3CHblmE0LY4GdIHrwj7wqowvVstQ6LCoicHQY_LFSbtnd-W18EJxYqwstDnQSrp8fl_CVavD2_zh8WUSGZ8hEojVohgMQcpSoFGtTIBNPGmjwRYHle5gJQSJuaBMHmqJhkWthYxSDFJLgdvV3ffuyQfFY7KrCqoMF2R1lsYjG8rwfw7l-QJ5oLJTlXA3o_okXfEvVos653NfRfGWfZPuLMpNkY8cDeHLRAQyi2h6Zw9HegtUjlXnk9Yg4Rf7cHxzeEnoPH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671354115</pqid></control><display><type>article</type><title>Cepstrum-based pitch detection using a new statistical V/UV classification algorithm</title><source>IEEE Xplore (Online service)</source><creator>Ahmadi, S. ; Spanias, A.S.</creator><creatorcontrib>Ahmadi, S. ; Spanias, A.S.</creatorcontrib><description>An improved cepstrum-based voicing detection and pitch determination algorithm is presented. Voicing decisions are made using a multifeature voiced/unvoiced classification algorithm based on statistical analysis of cepstral peak, zero-crossing rate, and energy of short-time segments of the speech signal. Pitch frequency information is extracted by a modified cepstrum-based method and then carefully refined using pitch tracking, correction, and smoothing algorithms. Performance analysis on a large database indicates considerable improvement relative to the conventional cepstrum method. The proposed algorithm is also shown to be robust to additive noise.</description><identifier>ISSN: 1063-6676</identifier><identifier>EISSN: 1558-2353</identifier><identifier>DOI: 10.1109/89.759042</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Cepstral analysis ; Cepstrum ; Classification ; Classification algorithms ; Data mining ; Energy use ; Exact sciences and technology ; Frequency ; Information, signal and communications theory ; Performance analysis ; Segments ; Signal processing ; Smoothing ; Smoothing methods ; Speech ; Speech analysis ; Speech processing ; Statistical analysis ; Telecommunications and information theory ; Tracking</subject><ispartof>IEEE transactions on speech and audio processing, 1999-05, Vol.7 (3), p.333-338</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43</citedby><cites>FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1773945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmadi, S.</creatorcontrib><creatorcontrib>Spanias, A.S.</creatorcontrib><title>Cepstrum-based pitch detection using a new statistical V/UV classification algorithm</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>An improved cepstrum-based voicing detection and pitch determination algorithm is presented. Voicing decisions are made using a multifeature voiced/unvoiced classification algorithm based on statistical analysis of cepstral peak, zero-crossing rate, and energy of short-time segments of the speech signal. Pitch frequency information is extracted by a modified cepstrum-based method and then carefully refined using pitch tracking, correction, and smoothing algorithms. Performance analysis on a large database indicates considerable improvement relative to the conventional cepstrum method. The proposed algorithm is also shown to be robust to additive noise.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Cepstral analysis</subject><subject>Cepstrum</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Information, signal and communications theory</subject><subject>Performance analysis</subject><subject>Segments</subject><subject>Signal processing</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Speech</subject><subject>Speech analysis</subject><subject>Speech processing</subject><subject>Statistical analysis</subject><subject>Telecommunications and information theory</subject><subject>Tracking</subject><issn>1063-6676</issn><issn>1558-2353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEElAYWJkyIARDWju2Y2dEFV9SJZa2a3RJzq1Rvsi5Qvx7UlLBxnSnu-ce6d4guOJsyjlLZyadapUyGR8FZ1wpE8VCieOhZ4mIkkQnp8E50TtjzHAtz4LlHDvy_a6OciAsw875YhuW6LHwrm3CHblmE0LY4GdIHrwj7wqowvVstQ6LCoicHQY_LFSbtnd-W18EJxYqwstDnQSrp8fl_CVavD2_zh8WUSGZ8hEojVohgMQcpSoFGtTIBNPGmjwRYHle5gJQSJuaBMHmqJhkWthYxSDFJLgdvV3ffuyQfFY7KrCqoMF2R1lsYjG8rwfw7l-QJ5oLJTlXA3o_okXfEvVos653NfRfGWfZPuLMpNkY8cDeHLRAQyi2h6Zw9HegtUjlXnk9Yg4Rf7cHxzeEnoPH</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Ahmadi, S.</creator><creator>Spanias, A.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990501</creationdate><title>Cepstrum-based pitch detection using a new statistical V/UV classification algorithm</title><author>Ahmadi, S. ; Spanias, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Cepstral analysis</topic><topic>Cepstrum</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Information, signal and communications theory</topic><topic>Performance analysis</topic><topic>Segments</topic><topic>Signal processing</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Speech</topic><topic>Speech analysis</topic><topic>Speech processing</topic><topic>Statistical analysis</topic><topic>Telecommunications and information theory</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, S.</creatorcontrib><creatorcontrib>Spanias, A.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, S.</au><au>Spanias, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cepstrum-based pitch detection using a new statistical V/UV classification algorithm</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>7</volume><issue>3</issue><spage>333</spage><epage>338</epage><pages>333-338</pages><issn>1063-6676</issn><eissn>1558-2353</eissn><coden>IESPEJ</coden><abstract>An improved cepstrum-based voicing detection and pitch determination algorithm is presented. Voicing decisions are made using a multifeature voiced/unvoiced classification algorithm based on statistical analysis of cepstral peak, zero-crossing rate, and energy of short-time segments of the speech signal. Pitch frequency information is extracted by a modified cepstrum-based method and then carefully refined using pitch tracking, correction, and smoothing algorithms. Performance analysis on a large database indicates considerable improvement relative to the conventional cepstrum method. The proposed algorithm is also shown to be robust to additive noise.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/89.759042</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 1999-05, Vol.7 (3), p.333-338
issn 1063-6676
1558-2353
language eng
recordid cdi_ieee_primary_759042
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Cepstral analysis
Cepstrum
Classification
Classification algorithms
Data mining
Energy use
Exact sciences and technology
Frequency
Information, signal and communications theory
Performance analysis
Segments
Signal processing
Smoothing
Smoothing methods
Speech
Speech analysis
Speech processing
Statistical analysis
Telecommunications and information theory
Tracking
title Cepstrum-based pitch detection using a new statistical V/UV classification algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cepstrum-based%20pitch%20detection%20using%20a%20new%20statistical%20V/UV%20classification%20algorithm&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Ahmadi,%20S.&rft.date=1999-05-01&rft.volume=7&rft.issue=3&rft.spage=333&rft.epage=338&rft.pages=333-338&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/89.759042&rft_dat=%3Cproquest_ieee_%3E28233537%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-a57e75eaa4ebe45d3e8e7e03078f8b63af1bdb3ae34f986eafbe504073f252a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671354115&rft_id=info:pmid/&rft_ieee_id=759042&rfr_iscdi=true