Loading…
Advances in confidence measures for large vocabulary
This paper addresses the correct choice and combination of confidence measures in large vocabulary speech recognition tasks. We classify single words within continuous as well as large vocabulary utterances into two categories: utterances within the vocabulary which are recognized correctly, and oth...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 708 vol.2 |
container_issue | |
container_start_page | 705 |
container_title | |
container_volume | 2 |
creator | Wendemuth, A. Rose, G. Dolfing, J.G.A. |
description | This paper addresses the correct choice and combination of confidence measures in large vocabulary speech recognition tasks. We classify single words within continuous as well as large vocabulary utterances into two categories: utterances within the vocabulary which are recognized correctly, and other utterances, namely misrecognized utterances or (less frequent) out-of-vocabulary (OOV). To this end, we investigate the classification error rate (CER) of several classes of confidence measures and transformations. In particular, we employed data-independent and data-dependent measures. The transformations we investigated include mapping to single confidence measures and linear combinations of these measures. These combinations are computed by means of neural networks trained with Bayes-optimal, and with Gardner-Derrida-optimal criteria. Compared to a recognition system without confidence measures, the selection of (various combinations of) confidence measures, the selection of suitable neural network architectures and training methods, continuously improves the CER. |
doi_str_mv | 10.1109/ICASSP.1999.759764 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_759764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759764</ieee_id><sourcerecordid>759764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-58d237fb708090d6b709c5bfc415c5c80d70e0d65f23858ca67cf6383da9757b3</originalsourceid><addsrcrecordid>eNotj91KAzEQhYM_4Fr7Ar3aF8g62WSSzGUpaoWCQhW8K9n8SKTdlV1b8O0N1Lk553wXM2cYWwhohAC6f14tt9vXRhBRY5CMVhesaqUhLgg-LtktGAsSQQl5xSqBLXAtFN2w-TR9QRmFCEZWTC3DyfU-TnXuaz_0KYdYYn2IbjqOBadhrPdu_Iz1afCuOxb_e8euk9tPcf6vM_b--PC2WvPNy1NptuG5BfnD0YZSKXUGLBAEXQx57JJXAj16C8FALBxTKy1a77TxSUsrgyODppMztjjvzTHG3feYD-X47vyv_AMRa0cL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advances in confidence measures for large vocabulary</title><source>IEEE Xplore All Conference Series</source><creator>Wendemuth, A. ; Rose, G. ; Dolfing, J.G.A.</creator><creatorcontrib>Wendemuth, A. ; Rose, G. ; Dolfing, J.G.A.</creatorcontrib><description>This paper addresses the correct choice and combination of confidence measures in large vocabulary speech recognition tasks. We classify single words within continuous as well as large vocabulary utterances into two categories: utterances within the vocabulary which are recognized correctly, and other utterances, namely misrecognized utterances or (less frequent) out-of-vocabulary (OOV). To this end, we investigate the classification error rate (CER) of several classes of confidence measures and transformations. In particular, we employed data-independent and data-dependent measures. The transformations we investigated include mapping to single confidence measures and linear combinations of these measures. These combinations are computed by means of neural networks trained with Bayes-optimal, and with Gardner-Derrida-optimal criteria. Compared to a recognition system without confidence measures, the selection of (various combinations of) confidence measures, the selection of suitable neural network architectures and training methods, continuously improves the CER.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.759764</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer networks ; Error analysis ; Hidden Markov models ; Laboratories ; Neural networks ; Particle measurements ; Speech recognition ; Vectors ; Vocabulary</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.705-708 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wendemuth, A.</creatorcontrib><creatorcontrib>Rose, G.</creatorcontrib><creatorcontrib>Dolfing, J.G.A.</creatorcontrib><title>Advances in confidence measures for large vocabulary</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>This paper addresses the correct choice and combination of confidence measures in large vocabulary speech recognition tasks. We classify single words within continuous as well as large vocabulary utterances into two categories: utterances within the vocabulary which are recognized correctly, and other utterances, namely misrecognized utterances or (less frequent) out-of-vocabulary (OOV). To this end, we investigate the classification error rate (CER) of several classes of confidence measures and transformations. In particular, we employed data-independent and data-dependent measures. The transformations we investigated include mapping to single confidence measures and linear combinations of these measures. These combinations are computed by means of neural networks trained with Bayes-optimal, and with Gardner-Derrida-optimal criteria. Compared to a recognition system without confidence measures, the selection of (various combinations of) confidence measures, the selection of suitable neural network architectures and training methods, continuously improves the CER.</description><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Error analysis</subject><subject>Hidden Markov models</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Particle measurements</subject><subject>Speech recognition</subject><subject>Vectors</subject><subject>Vocabulary</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEQhYM_4Fr7Ar3aF8g62WSSzGUpaoWCQhW8K9n8SKTdlV1b8O0N1Lk553wXM2cYWwhohAC6f14tt9vXRhBRY5CMVhesaqUhLgg-LtktGAsSQQl5xSqBLXAtFN2w-TR9QRmFCEZWTC3DyfU-TnXuaz_0KYdYYn2IbjqOBadhrPdu_Iz1afCuOxb_e8euk9tPcf6vM_b--PC2WvPNy1NptuG5BfnD0YZSKXUGLBAEXQx57JJXAj16C8FALBxTKy1a77TxSUsrgyODppMztjjvzTHG3feYD-X47vyv_AMRa0cL</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Wendemuth, A.</creator><creator>Rose, G.</creator><creator>Dolfing, J.G.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Advances in confidence measures for large vocabulary</title><author>Wendemuth, A. ; Rose, G. ; Dolfing, J.G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-58d237fb708090d6b709c5bfc415c5c80d70e0d65f23858ca67cf6383da9757b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Error analysis</topic><topic>Hidden Markov models</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Particle measurements</topic><topic>Speech recognition</topic><topic>Vectors</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Wendemuth, A.</creatorcontrib><creatorcontrib>Rose, G.</creatorcontrib><creatorcontrib>Dolfing, J.G.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wendemuth, A.</au><au>Rose, G.</au><au>Dolfing, J.G.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advances in confidence measures for large vocabulary</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>705</spage><epage>708 vol.2</epage><pages>705-708 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>This paper addresses the correct choice and combination of confidence measures in large vocabulary speech recognition tasks. We classify single words within continuous as well as large vocabulary utterances into two categories: utterances within the vocabulary which are recognized correctly, and other utterances, namely misrecognized utterances or (less frequent) out-of-vocabulary (OOV). To this end, we investigate the classification error rate (CER) of several classes of confidence measures and transformations. In particular, we employed data-independent and data-dependent measures. The transformations we investigated include mapping to single confidence measures and linear combinations of these measures. These combinations are computed by means of neural networks trained with Bayes-optimal, and with Gardner-Derrida-optimal criteria. Compared to a recognition system without confidence measures, the selection of (various combinations of) confidence measures, the selection of suitable neural network architectures and training methods, continuously improves the CER.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.759764</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.705-708 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_759764 |
source | IEEE Xplore All Conference Series |
subjects | Computer architecture Computer networks Error analysis Hidden Markov models Laboratories Neural networks Particle measurements Speech recognition Vectors Vocabulary |
title | Advances in confidence measures for large vocabulary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advances%20in%20confidence%20measures%20for%20large%20vocabulary&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Wendemuth,%20A.&rft.date=1999&rft.volume=2&rft.spage=705&rft.epage=708%20vol.2&rft.pages=705-708%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.759764&rft_dat=%3Cieee_CHZPO%3E759764%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-58d237fb708090d6b709c5bfc415c5c80d70e0d65f23858ca67cf6383da9757b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=759764&rfr_iscdi=true |