Loading…
Decision-feedback equalization of pulse-position modulation on measured nondirected indoor infrared channels
We examine the performance of two decision-feedback equalizers (DFEs) for pulse-position modulation (PPM) on measured nondirected indoor infrared channels with intersymbol interference. PPM offers high average-power efficiency, but on ISI channels, unequalized PPM suffers severe performance penaltie...
Saved in:
Published in: | IEEE transactions on communications 1999-04, Vol.47 (4), p.500-503 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examine the performance of two decision-feedback equalizers (DFEs) for pulse-position modulation (PPM) on measured nondirected indoor infrared channels with intersymbol interference. PPM offers high average-power efficiency, but on ISI channels, unequalized PPM suffers severe performance penalties. We have previously examined the performance of the maximum-likelihood sequence detector (MLSD), and found that it yields significant improvements. However, the MLSD often requires such large complexity and delay that it may be impractical. We investigate suboptimal, reduced-complexity equalization techniques for PPM, providing a performance analysis of zero-forcing chip-rate and symbol-rate DFEs. Our results show that a symbol-rate DFE provides performance that closely approaches that of the optimal MLSD. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.764921 |