Loading…

Model predictive satisficing fuzzy logic control

Model-predictive control, which is an alternative to conventional optimal control, provides controller solutions to many constrained and nonlinear control problems. However, even when a good model is available, it may be necessary for an expert to specify the relationship between local model predict...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 1999-06, Vol.7 (3), p.319-332
Main Authors: Goodrich, M.A., Stirling, W.C., Frost, R.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Model-predictive control, which is an alternative to conventional optimal control, provides controller solutions to many constrained and nonlinear control problems. However, even when a good model is available, it may be necessary for an expert to specify the relationship between local model predictions and global system performance. We present a satisficing fuzzy logic controller that is based on a receding control horizon, but which employs a fuzzy description of system consequences via model predictions. This controller considers the gains and losses associated with each control action, is compatible with robust design objectives, and permits flexible defuzzifier design. We demonstrate the controller's application to representative problems from the control of uncertain nonlinear systems.
ISSN:1063-6706
1941-0034
DOI:10.1109/91.771087