Loading…

A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation

The data mining systems solve the problem of handling Earth Observation archives counting on a feature vectors based description of the data. Increasing the dimensionality of the feature vectors would offer an effective perspective of the dataset's content. The modern systems provide visual exp...

Full description

Saved in:
Bibliographic Details
Main Authors: Griparis, Andreea, Faur, Daniela, Datcu, Mihai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2920
container_issue
container_start_page 2917
container_title
container_volume
creator Griparis, Andreea
Faur, Daniela
Datcu, Mihai
description The data mining systems solve the problem of handling Earth Observation archives counting on a feature vectors based description of the data. Increasing the dimensionality of the feature vectors would offer an effective perspective of the dataset's content. The modern systems provide visual exploration of data projecting their high-dimensional feature space in a 3-D space. The dimensionality reduction methods represent the main way to achieve such representation. Several dimensionality reduction methods have been proposed to identify the mapping, bot not all of them retain the same dataset properties. In order to compare their performance, the development of formal measures like "Trustworthiness" or the measures based on Co-ranking matrix was mandatory. These measures objectively evaluate the similarity between the structure detected in the original and the reduced space. In this paper we evaluate six dimensionality reduction methods using "Trustworthiness" and "Continuity" measures. In this regard three datasets have been used: an artificial one and two remote sensing datasets. Each of them have been described by a high-dimensional feature space.
doi_str_mv 10.1109/IGARSS.2016.7729753
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7729753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7729753</ieee_id><sourcerecordid>7729753</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-316d6b97087a5bc21ad7c864f2a440f16337687b15859db0099bbdebba22fa73</originalsourceid><addsrcrecordid>eNotUN1KwzAUjoLgNn2C3eQFWk-Spmm8K0PnYCC43Y-TNmWRbi1JOplPb6m7-n7PufgIWTJIGQP9slmXX7tdyoHlqVJcKynuyJxJ0CCE4OqezDiTIlEA4pHMQ_geScEBZqQtae1O9hxcd8bWxSv1th6qOEqKfe87rI606TyNR0svLgxj6RenuGsms2qHEK2nocfKvtKSRj8aP52PR3e2IVB7wXaYTp7IQ4NtsM83XJD9-9t-9ZFsP9ebVblNHFMyJoLldW60gkKhNBVnWKuqyLOGY5ZBw3IhVF4ow2QhdW0AtDamtsYg5w0qsSDL_7fOWnvovTuhvx5uw4g_iwpalw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation</title><source>IEEE Xplore All Conference Series</source><creator>Griparis, Andreea ; Faur, Daniela ; Datcu, Mihai</creator><creatorcontrib>Griparis, Andreea ; Faur, Daniela ; Datcu, Mihai</creatorcontrib><description>The data mining systems solve the problem of handling Earth Observation archives counting on a feature vectors based description of the data. Increasing the dimensionality of the feature vectors would offer an effective perspective of the dataset's content. The modern systems provide visual exploration of data projecting their high-dimensional feature space in a 3-D space. The dimensionality reduction methods represent the main way to achieve such representation. Several dimensionality reduction methods have been proposed to identify the mapping, bot not all of them retain the same dataset properties. In order to compare their performance, the development of formal measures like "Trustworthiness" or the measures based on Co-ranking matrix was mandatory. These measures objectively evaluate the similarity between the structure detected in the original and the reduced space. In this paper we evaluate six dimensionality reduction methods using "Trustworthiness" and "Continuity" measures. In this regard three datasets have been used: an artificial one and two remote sensing datasets. Each of them have been described by a high-dimensional feature space.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1509033327</identifier><identifier>EISBN: 9781509033324</identifier><identifier>DOI: 10.1109/IGARSS.2016.7729753</identifier><language>eng</language><publisher>IEEE</publisher><subject>continuity ; Data visualization ; dimesionality ; Earth ; evaluation ; Feature extraction ; Indexes ; Principal component analysis ; reduction ; Remote sensing ; Satellites ; trustworthiness ; visualization</subject><ispartof>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, p.2917-2920</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7729753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7729753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Griparis, Andreea</creatorcontrib><creatorcontrib>Faur, Daniela</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><title>A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation</title><title>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</title><addtitle>IGARSS</addtitle><description>The data mining systems solve the problem of handling Earth Observation archives counting on a feature vectors based description of the data. Increasing the dimensionality of the feature vectors would offer an effective perspective of the dataset's content. The modern systems provide visual exploration of data projecting their high-dimensional feature space in a 3-D space. The dimensionality reduction methods represent the main way to achieve such representation. Several dimensionality reduction methods have been proposed to identify the mapping, bot not all of them retain the same dataset properties. In order to compare their performance, the development of formal measures like "Trustworthiness" or the measures based on Co-ranking matrix was mandatory. These measures objectively evaluate the similarity between the structure detected in the original and the reduced space. In this paper we evaluate six dimensionality reduction methods using "Trustworthiness" and "Continuity" measures. In this regard three datasets have been used: an artificial one and two remote sensing datasets. Each of them have been described by a high-dimensional feature space.</description><subject>continuity</subject><subject>Data visualization</subject><subject>dimesionality</subject><subject>Earth</subject><subject>evaluation</subject><subject>Feature extraction</subject><subject>Indexes</subject><subject>Principal component analysis</subject><subject>reduction</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>trustworthiness</subject><subject>visualization</subject><issn>2153-7003</issn><isbn>1509033327</isbn><isbn>9781509033324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUN1KwzAUjoLgNn2C3eQFWk-Spmm8K0PnYCC43Y-TNmWRbi1JOplPb6m7-n7PufgIWTJIGQP9slmXX7tdyoHlqVJcKynuyJxJ0CCE4OqezDiTIlEA4pHMQ_geScEBZqQtae1O9hxcd8bWxSv1th6qOEqKfe87rI606TyNR0svLgxj6RenuGsms2qHEK2nocfKvtKSRj8aP52PR3e2IVB7wXaYTp7IQ4NtsM83XJD9-9t-9ZFsP9ebVblNHFMyJoLldW60gkKhNBVnWKuqyLOGY5ZBw3IhVF4ow2QhdW0AtDamtsYg5w0qsSDL_7fOWnvovTuhvx5uw4g_iwpalw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Griparis, Andreea</creator><creator>Faur, Daniela</creator><creator>Datcu, Mihai</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201607</creationdate><title>A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation</title><author>Griparis, Andreea ; Faur, Daniela ; Datcu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-316d6b97087a5bc21ad7c864f2a440f16337687b15859db0099bbdebba22fa73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>continuity</topic><topic>Data visualization</topic><topic>dimesionality</topic><topic>Earth</topic><topic>evaluation</topic><topic>Feature extraction</topic><topic>Indexes</topic><topic>Principal component analysis</topic><topic>reduction</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>trustworthiness</topic><topic>visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Griparis, Andreea</creatorcontrib><creatorcontrib>Faur, Daniela</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Griparis, Andreea</au><au>Faur, Daniela</au><au>Datcu, Mihai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation</atitle><btitle>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</btitle><stitle>IGARSS</stitle><date>2016-07</date><risdate>2016</risdate><spage>2917</spage><epage>2920</epage><pages>2917-2920</pages><eissn>2153-7003</eissn><eisbn>1509033327</eisbn><eisbn>9781509033324</eisbn><abstract>The data mining systems solve the problem of handling Earth Observation archives counting on a feature vectors based description of the data. Increasing the dimensionality of the feature vectors would offer an effective perspective of the dataset's content. The modern systems provide visual exploration of data projecting their high-dimensional feature space in a 3-D space. The dimensionality reduction methods represent the main way to achieve such representation. Several dimensionality reduction methods have been proposed to identify the mapping, bot not all of them retain the same dataset properties. In order to compare their performance, the development of formal measures like "Trustworthiness" or the measures based on Co-ranking matrix was mandatory. These measures objectively evaluate the similarity between the structure detected in the original and the reduced space. In this paper we evaluate six dimensionality reduction methods using "Trustworthiness" and "Continuity" measures. In this regard three datasets have been used: an artificial one and two remote sensing datasets. Each of them have been described by a high-dimensional feature space.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2016.7729753</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, p.2917-2920
issn 2153-7003
language eng
recordid cdi_ieee_primary_7729753
source IEEE Xplore All Conference Series
subjects continuity
Data visualization
dimesionality
Earth
evaluation
Feature extraction
Indexes
Principal component analysis
reduction
Remote sensing
Satellites
trustworthiness
visualization
title A dimensionality reduction approach for the visualization of the cluster space: A trustworthiness evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20dimensionality%20reduction%20approach%20for%20the%20visualization%20of%20the%20cluster%20space:%20A%20trustworthiness%20evaluation&rft.btitle=2016%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20(IGARSS)&rft.au=Griparis,%20Andreea&rft.date=2016-07&rft.spage=2917&rft.epage=2920&rft.pages=2917-2920&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2016.7729753&rft.eisbn=1509033327&rft.eisbn_list=9781509033324&rft_dat=%3Cieee_CHZPO%3E7729753%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-316d6b97087a5bc21ad7c864f2a440f16337687b15859db0099bbdebba22fa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7729753&rfr_iscdi=true