Loading…
Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences
It is found that data placement on the networked nodes of a cluster based on the shared-nothing architecture (SNA) should align in the physical (i.e. spatiotemporal) space for most geoscience Big Data analysis systems in order to minimize data movements and thus achieve optimal performance and effic...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7607 |
container_issue | |
container_start_page | 7605 |
container_title | |
container_volume | |
creator | Kwo-Sen Kuo Oloso, Amidu Khoa Doan Clune, Thomas L. Hongfeng Yu |
description | It is found that data placement on the networked nodes of a cluster based on the shared-nothing architecture (SNA) should align in the physical (i.e. spatiotemporal) space for most geoscience Big Data analysis systems in order to minimize data movements and thus achieve optimal performance and efficiency. This is due to the fact that data analysis in geosciences predominantly requires spatiotemporal coincidence. If individual datasets are considered separately in their placement on the cluster nodes, these systems often have to move data between nodes when an analysis involves two or more datasets. In this paper, we first report our discoveries from a data placement alignment experiment with two Big Data technologies, SciDB and Spark+HDFS, and then elucidate some of the far-reaching implications of this discovery. |
doi_str_mv | 10.1109/IGARSS.2016.7730983 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7730983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7730983</ieee_id><sourcerecordid>7730983</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d9f6d3be39c4738232cacad668405540ad7a91af64076d622dbdc8c752c342e13</originalsourceid><addsrcrecordid>eNotkM9KAzEYxKMg2FafoJe8wNb82U12j7VqXSgIVs_la_LtbmSblCQ99O2t2NMMzI9hGELmnC04Z81Tu15-brcLwbhaaC1ZU8sbMuUVa5iUUuhbMhG8koVmTN6TaUo_F1MLxibk1B6OozOQXfCJho5ayECPIxg8oM805QgZ-zPNgT67nr78xRnN4MMYeoeJ7iGhpcHTNEBEW_iQB-d7CtEM7kLmU0TahUh7DMk49AbTA7nrYEz4eNUZ-X57_Vq9F5uPdbtabgrHdZUL23TKyj3KxpT6MlgKAwasUnXJqqpkYDU0HDpVMq2sEsLuramNroSRpUAuZ2T-3-sQcXeM7gDxvLteJH8BKjpdkg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences</title><source>IEEE Xplore All Conference Series</source><creator>Kwo-Sen Kuo ; Oloso, Amidu ; Khoa Doan ; Clune, Thomas L. ; Hongfeng Yu</creator><creatorcontrib>Kwo-Sen Kuo ; Oloso, Amidu ; Khoa Doan ; Clune, Thomas L. ; Hongfeng Yu</creatorcontrib><description>It is found that data placement on the networked nodes of a cluster based on the shared-nothing architecture (SNA) should align in the physical (i.e. spatiotemporal) space for most geoscience Big Data analysis systems in order to minimize data movements and thus achieve optimal performance and efficiency. This is due to the fact that data analysis in geosciences predominantly requires spatiotemporal coincidence. If individual datasets are considered separately in their placement on the cluster nodes, these systems often have to move data between nodes when an analysis involves two or more datasets. In this paper, we first report our discoveries from a data placement alignment experiment with two Big Data technologies, SciDB and Spark+HDFS, and then elucidate some of the far-reaching implications of this discovery.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1509033327</identifier><identifier>EISBN: 9781509033324</identifier><identifier>DOI: 10.1109/IGARSS.2016.7730983</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Big data ; data placement ; Geology ; geoscience ; Shape ; shared-nothing architecture ; Spatiotemporal phenomena ; Temperature distribution</subject><ispartof>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, p.7605-7607</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7730983$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7730983$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwo-Sen Kuo</creatorcontrib><creatorcontrib>Oloso, Amidu</creatorcontrib><creatorcontrib>Khoa Doan</creatorcontrib><creatorcontrib>Clune, Thomas L.</creatorcontrib><creatorcontrib>Hongfeng Yu</creatorcontrib><title>Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences</title><title>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</title><addtitle>IGARSS</addtitle><description>It is found that data placement on the networked nodes of a cluster based on the shared-nothing architecture (SNA) should align in the physical (i.e. spatiotemporal) space for most geoscience Big Data analysis systems in order to minimize data movements and thus achieve optimal performance and efficiency. This is due to the fact that data analysis in geosciences predominantly requires spatiotemporal coincidence. If individual datasets are considered separately in their placement on the cluster nodes, these systems often have to move data between nodes when an analysis involves two or more datasets. In this paper, we first report our discoveries from a data placement alignment experiment with two Big Data technologies, SciDB and Spark+HDFS, and then elucidate some of the far-reaching implications of this discovery.</description><subject>Arrays</subject><subject>Big data</subject><subject>data placement</subject><subject>Geology</subject><subject>geoscience</subject><subject>Shape</subject><subject>shared-nothing architecture</subject><subject>Spatiotemporal phenomena</subject><subject>Temperature distribution</subject><issn>2153-7003</issn><isbn>1509033327</isbn><isbn>9781509033324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9KAzEYxKMg2FafoJe8wNb82U12j7VqXSgIVs_la_LtbmSblCQ99O2t2NMMzI9hGELmnC04Z81Tu15-brcLwbhaaC1ZU8sbMuUVa5iUUuhbMhG8koVmTN6TaUo_F1MLxibk1B6OozOQXfCJho5ayECPIxg8oM805QgZ-zPNgT67nr78xRnN4MMYeoeJ7iGhpcHTNEBEW_iQB-d7CtEM7kLmU0TahUh7DMk49AbTA7nrYEz4eNUZ-X57_Vq9F5uPdbtabgrHdZUL23TKyj3KxpT6MlgKAwasUnXJqqpkYDU0HDpVMq2sEsLuramNroSRpUAuZ2T-3-sQcXeM7gDxvLteJH8BKjpdkg</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Kwo-Sen Kuo</creator><creator>Oloso, Amidu</creator><creator>Khoa Doan</creator><creator>Clune, Thomas L.</creator><creator>Hongfeng Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201607</creationdate><title>Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences</title><author>Kwo-Sen Kuo ; Oloso, Amidu ; Khoa Doan ; Clune, Thomas L. ; Hongfeng Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d9f6d3be39c4738232cacad668405540ad7a91af64076d622dbdc8c752c342e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Big data</topic><topic>data placement</topic><topic>Geology</topic><topic>geoscience</topic><topic>Shape</topic><topic>shared-nothing architecture</topic><topic>Spatiotemporal phenomena</topic><topic>Temperature distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwo-Sen Kuo</creatorcontrib><creatorcontrib>Oloso, Amidu</creatorcontrib><creatorcontrib>Khoa Doan</creatorcontrib><creatorcontrib>Clune, Thomas L.</creatorcontrib><creatorcontrib>Hongfeng Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwo-Sen Kuo</au><au>Oloso, Amidu</au><au>Khoa Doan</au><au>Clune, Thomas L.</au><au>Hongfeng Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences</atitle><btitle>2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</btitle><stitle>IGARSS</stitle><date>2016-07</date><risdate>2016</risdate><spage>7605</spage><epage>7607</epage><pages>7605-7607</pages><eissn>2153-7003</eissn><eisbn>1509033327</eisbn><eisbn>9781509033324</eisbn><abstract>It is found that data placement on the networked nodes of a cluster based on the shared-nothing architecture (SNA) should align in the physical (i.e. spatiotemporal) space for most geoscience Big Data analysis systems in order to minimize data movements and thus achieve optimal performance and efficiency. This is due to the fact that data analysis in geosciences predominantly requires spatiotemporal coincidence. If individual datasets are considered separately in their placement on the cluster nodes, these systems often have to move data between nodes when an analysis involves two or more datasets. In this paper, we first report our discoveries from a data placement alignment experiment with two Big Data technologies, SciDB and Spark+HDFS, and then elucidate some of the far-reaching implications of this discovery.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2016.7730983</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, p.7605-7607 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_7730983 |
source | IEEE Xplore All Conference Series |
subjects | Arrays Big data data placement Geology geoscience Shape shared-nothing architecture Spatiotemporal phenomena Temperature distribution |
title | Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implications%20of%20data%20placement%20strategy%20to%20Big%20Data%20technologies%20based%20on%20shared-nothing%20architecture%20for%20geosciences&rft.btitle=2016%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20(IGARSS)&rft.au=Kwo-Sen%20Kuo&rft.date=2016-07&rft.spage=7605&rft.epage=7607&rft.pages=7605-7607&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2016.7730983&rft.eisbn=1509033327&rft.eisbn_list=9781509033324&rft_dat=%3Cieee_CHZPO%3E7730983%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d9f6d3be39c4738232cacad668405540ad7a91af64076d622dbdc8c752c342e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7730983&rfr_iscdi=true |