Loading…
Optimal State Estimation for Systems Driven by Jump-Diffusion Process With Application to Road Anomaly Detection
Jump-diffusion processes (JDPs) involve a combination of jumps (Poisson process) and diffusions (Wiener process). JDPs can be used to model large classes of disturbances in engineering applications, such as road disturbances to a car, wind disturbances to an airplane, and system parameter perturbati...
Saved in:
Published in: | IEEE transactions on control systems technology 2017-09, Vol.25 (5), p.1634-1643 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Jump-diffusion processes (JDPs) involve a combination of jumps (Poisson process) and diffusions (Wiener process). JDPs can be used to model large classes of disturbances in engineering applications, such as road disturbances to a car, wind disturbances to an airplane, and system parameter perturbations. This paper develops a road anomaly detector by exploiting an optimal state estimator for systems driven by JDP in combination with the multi-input observer. State estimation with the JDP-based estimator is shown to have better performance than a Kalman filter when jumps, such as potholes and bumps, are present. The road anomaly detector is implemented in an experimental test vehicle and its experimental validation results are reported. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2016.2620062 |